866 resultados para Monitoring Systems
Resumo:
Nano-imprint forming (NIF) as manufacturing technology is ideally placed to enable high resolution, low-cost and high-throughput fabrication of three-dimensional fine structures and the packaging of heterogeneous micro-systems (S.Y. Chou and P.R. Krauss, 1997). This paper details a thermo-mechanical modelling methodology for optimising this process for different materials used in components such as mini-fluidics and bio-chemical systems, optoelectronics, photonics and health usage monitoring systems (HUMS). This work is part of a major UK Grand Challenge project - 3D-Mintegration - which is aiming to develop modelling and design technologies for the next generation of fabrication, assembly and test processes for 3D-miniaturised systems.
Resumo:
Flow responsive passive samplers offer considerable potential in nutrient monitoring in catchments; bridging the gap between the intermittency of grab sampling and the high cost of automated monitoring systems. A commercially available passive sampler was evaluated in a number of river systems encapsulating a gradient in storm response, combinations of diffuse and point source pressures, and levels of phosphorus and nitrogen concentrations. Phosphorus and nitrogen are sequestered to a resin matrix in a permeable cartridge positioned in line with streamflow. A salt tracer dissolves in proportion to advective flow through the cartridge. Multiple deployments of different cartridge types were undertaken and the recovery of P and N compared with the flow-weighted mean concentration (FWMC) from high-resolution bank-side analysers at each site. Results from the passive samplers were variable and largely underestimated the FWMC derived from the bank-side analysers. Laboratory tests using ambient river samples indicated good replication of advective throughflow using pumped water, although this appeared not to be a good analogue of river conditions where flow divergence was possible. Laboratory tests also showed good nutrient retention but not elution and these issues appeared to combine to limit the utility in ambient river systems at the small catchment scale.
Resumo:
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.
Resumo:
Tese de doutoramento, Ciências do Mar, da Terra e do Ambiente (Modelação), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Dissertação de Natureza Científica elabora da no âmbito do protocolo de cooperação entre o ISEL e o LNEC para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório de Engenharia Civil (LNEC) para obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo entre o ISEL e o LNEC
Resumo:
RESUMO - O excesso de peso (EP) é um dos mais graves problemas de Saúde Pública deste século XXI, dada a sua elevada e crescente prevalência a nível mundial, afectando um elevado número de adultos, adolescentes e crianças, com graves consequências na saúde, sendo responsável pelo aumento das doenças crónicas e pela diminuição da duração e qualidade de vida dos indivíduos. Em Portugal, a prevalência do EP afecta mais de metade da população adulta portuguesa. No meio militar, este problema é reflexo da prevalência do EP na população em geral e, para além das consequências económicas e na saúde, prejudica a aparência militar e pode comprometer a aptidão física. Pretende-se com realizar um estudo exploratório, com vista a realizar uma primeira abordagem do conhecimento do perfil e tendências do índice de massa corporal (IMC), bem como da prevalência do EP e, ainda, de possíveis associações entre o EP e a aptidão física, numa amostra representativa de militares no activo da Marinha Portuguesa (MP). Com os resultados deste estudo pretende-se alertar, pela primeira vez, para a problemática do EP no meio militar, contribuindo também para ampliar o conhecimento da prevalência do EP em subgrupos da população nacional. Os resultados obtidos poderão servir de base para a constituição de um sistema de vigilância, para um correcto entendimento da evolução da tendência do IMC e da prevalência de EP dos militares da MP, bem como disponibilizar uma base de partida para outros estudos, focando os determinantes do EP associados a estilos de vida. ------------ABSTRACT - Overweight and obesity severe Public Health problems of the XXI Century due to its high and increasing worldwide prevalence, including Portugal, and it afects a high number of adults, adolescents and children, with serious health consequences, being responsible for the increase of chronic diseases and for lower life quality and lower life expectancy. In Portugal, overweight prevalence affects more than half of adult’s population. Among the Navy, overweight problem reflects population’s tendency, and, besides it’s economic and health consequences, can affect military image and can jeopardize physical fitness with consequences in the Navy response and performance. This study carries out an exploratory first approach of body’s mass index profile and trends, as well the prevalence of overweight in a representative sample of on duty Portuguese Navy staff, and the potential links between overweight and physical fitness among this population. It outcome seeks, for the first time, to draw attention to the overweight problematic among Navy staff, being also a way to enhance the knowledge of overweight prevalence among population sub-groups. It outcome can be a starting point for the set up of monitoring systems, for a correct understanding body’s mass index evolution trends and the prevalence Navy staff overweight, being also a foundation for other studies, foc
Resumo:
Os sistemas de monitorização de estruturas fornecem diversas vantagens, não só no que diz respeito à durabilidade da obra, ao aumento da segurança e do conhecimento relativamente ao comportamento das estruturas ao longo do tempo, à otimização do aspeto estrutural, bem como aos aspetos económicos do processo de construção e manutenção. A monitorização deve realizar-se durante a fase de construção e/ou de exploração da obra para permitir o registo integral do seu comportamento no meio externo. Deve efetuar-se de forma contínua e automática, executando intervenções de rotina para que se possa detetar precocemente sinais de alterações, respetivamente à segurança, integridade e desempenho funcional. Assim se poderá manter a estrutura dentro de parâmetros aceitáveis de segurança. Assim, na presente dissertação será concebido um demonstrador experimental, para ser estudado em laboratório, no qual será implementado um sistema de monitorização contínuo e automático. Sobre este demonstrador será feita uma análise de diferentes grandezas em medição, tais como: deslocamentos, extensões, temperatura, rotações e acelerações. Com carácter inovador, pretende-se ainda incluir neste modelo em sintonia de medição de coordenadas GNSS com o qual se torna possível medir deslocamentos absolutos. Os resultados experimentais alcançados serão analisados e comparados com modelos numéricos. Conferem-se os resultados experimentais de natureza estática e dinâmica, com os resultados numéricos de dois modelos de elementos finitos: um de barras e outro de casca. Realizaram-se diferentes abordagens tendo em conta as características identificadas por via experimental e calculadas nos modelos numéricos para melhor ajuste e calibração dos modelos numéricos Por fim, recorre-se a algoritmos de processamento e tratamento do respetivo sinal com aplicação de filtros, que revelam melhorar com rigor o sinal, de forma a potenciar as técnicas de fusão multisensor. Pretende-se integrar o sinal GNSS com os demais sensores presentes no sistema de monitorização. As técnicas de fusão multisensor visam melhor o desempenho deste potencial sistema de medição, demonstrando as suas valências no domínio da monitorização estrutural.
Resumo:
Dissertation to obtain the degree of Master in Electrical and Computer Engineering
Resumo:
In this thesis, the applications of the recurrence quantification analysis in metal cutting operation in a lathe, with specific objective to detect tool wear and chatter, are presented.This study is based on the discovery that process dynamics in a lathe is low dimensional chaotic. It implies that the machine dynamics is controllable using principles of chaos theory. This understanding is to revolutionize the feature extraction methodologies used in condition monitoring systems as conventional linear methods or models are incapable of capturing the critical and strange behaviors associated with the metal cutting process.As sensor based approaches provide an automated and cost effective way to monitor and control, an efficient feature extraction methodology based on nonlinear time series analysis is much more demanding. The task here is more complex when the information has to be deduced solely from sensor signals since traditional methods do not address the issue of how to treat noise present in real-world processes and its non-stationarity. In an effort to get over these two issues to the maximum possible, this thesis adopts the recurrence quantification analysis methodology in the study since this feature extraction technique is found to be robust against noise and stationarity in the signals.The work consists of two different sets of experiments in a lathe; set-I and set-2. The experiment, set-I, study the influence of tool wear on the RQA variables whereas the set-2 is carried out to identify the sensitive RQA variables to machine tool chatter followed by its validation in actual cutting. To obtain the bounds of the spectrum of the significant RQA variable values, in set-i, a fresh tool and a worn tool are used for cutting. The first part of the set-2 experiments uses a stepped shaft in order to create chatter at a known location. And the second part uses a conical section having a uniform taper along the axis for creating chatter to onset at some distance from the smaller end by gradually increasing the depth of cut while keeping the spindle speed and feed rate constant.The study concludes by revealing the dependence of certain RQA variables; percent determinism, percent recurrence and entropy, to tool wear and chatter unambiguously. The performances of the results establish this methodology to be viable for detection of tool wear and chatter in metal cutting operation in a lathe. The key reason is that the dynamics of the system under study have been nonlinear and the recurrence quantification analysis can characterize them adequately.This work establishes that principles and practice of machining can be considerably benefited and advanced from using nonlinear dynamics and chaos theory.
Resumo:
Agriculture and food security are key sectors for intervention under climate change. Agricultural production is highly vulnerable even to 2C (low-end) predictions for global mean temperatures in 2100, with major implications for rural poverty and for both rural and urban food security. Agriculture also presents untapped opportunities for mitigation, given the large land area under crops and rangeland, and the additional mitigation potential of aquaculture. This paper presents a summary of current knowledge on options to support farmers, particularly smallholder farmers, in achieving food security through agriculture under climate change. Actions towards adaptation fall into two broad overlapping areas: (1) accelerated adaptation to progressive climate change over decadal time scales, for example integrated packages of technology, agronomy and policy options for farmers and food systems, and (2) better management of agricultural risks associated with increasing climate variability and extreme events, for example improved climate information services and safety nets. Maximization of agriculture’s mitigation potential will require investments in technological innovation and agricultural intensification linked to increased efficiency of inputs, and creation of incentives and monitoring systems that are inclusive of smallholder farmers. Food systems faced with climate change need urgent, broad-based action in spite of uncertainties.
Resumo:
With the need to deploy management and monitoring systems of natural resources in areas susceptible to environmental degradation, as is the case of semiarid regions, several works have been developed in order to find effective models and technically and economically viable. Therefore, this study aimed to estimate the daily actual evapotranspiration (ETr) through the application of the Surface Energy Balance Algorithm for Land (SEBAL), from remote sensing products, in a semiarid region, Seridó of the Rio Grande do Norte, and do the validation of these estimates using ETr values obtained by the Penman-Monteith (standard method of the Food and Agriculture Organization-FAO). The SEBAL is based on energy balance method, which allows obtaining the vertical latent heat flux (LE) with orbital images and, consequently, of the evapotranspiration through the difference of flows, also vertical, of heat in the soil (G), sensitive heat (H) and radiation balance (Rn). The study area includes the surrounding areas of the Dourado reservoir, located in the Currais Novos/RN city. For the implementation of the algorithm were used five images TM/Landsat-5. The work was divided in three chapters in order to facilitate a better discussion of each part of the SEBAL processing, distributed as follows: first chapter addressing the spatio-temporal variability of the biophysical variables; second chapter dealing with spatio-temporal distribution of instant and daily radiation balance; and the third chapter discussing the heart of the work, the daily actual evapotranspiration estimation and the validation than to the study area
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)