996 resultados para Momentum-transfer
Resumo:
Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by nowrnentered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbativelyrn$\mathcal{O}(a)$-improved Wilson fermions to produce reliable results in thernchiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. Thisrnthesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phaserntransition in the chiral limit of two-flavour QCD.rnrnThe electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer $q^2$, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to $q^2=0$ which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike $q^2$-value available so far and $q^2=0$, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to test chiral perturbation theory ($\chi$PT) and are thereby extrapolated to the physical point and the continuum. The final result in units of the hadronic radius $r_0$ is rn$$ \left\langle r_\pi^2 \right\rangle^{\rm phys}/r_0^2 = 1.87 \: \left(^{+12}_{-10}\right)\left(^{+\:4}_{-15}\right) \quad \textnormal{or} \quad \left\langle r_\pi^2 \right\rangle^{\rm phys} = 0.473 \: \left(^{+30}_{-26}\right)\left(^{+10}_{-38}\right)(10) \: \textnormal{fm} \;, $$rn which agrees well with the results from other measurements in LQCD and experiment. Note, that this is the first continuum extrapolated result for the charge radius from LQCD which has been extracted from measurements of the form factor in the region of small $q^2$.rnrnThe order of the phase transition in the chiral limit of two-flavour QCD and the associated transition temperature are the last unkown features of the phase diagram at zero chemical potential. The two possible scenarios are a second order transition in the $O(4)$-universality class or a first order transition. Since direct simulations in the chiral limit are not possible the transition can only be investigated by simulating at non-zero quark mass with a subsequent chiral extrapolation, guided by the universal scaling in the vicinity of the critical point. The thesis presents the setup and first results from a study on this topic. The study provides the ideal platform to test the potential and limits of todays simulation algorithms at finite temperature. The results from a first scan at a constant zero-temperature pion mass of about 290~MeV are promising, and it appears that simulations down to physical quark masses are feasible. Of particular relevance for the order of the chiral transition is the strength of the anomalous breaking of the $U_A(1)$ symmetry at the transition point. It can be studied by looking at the degeneracies of the correlation functions in scalar and pseudoscalar channels. For the temperature scan reported in this thesis the breaking is still pronounced in the transition region and the symmetry becomes effectively restored only above $1.16\:T_C$. The thesis also provides an extensive outline of research perspectives and includes a generalisation of the standard multi-histogram method to explicitly $\beta$-dependent fermion actions.
Resumo:
The lattice formulation of Quantum ChromoDynamics (QCD) has become a reliable tool providing an ab initio calculation of low-energy quantities. Despite numerous successes, systematic uncertainties, such as discretisation effects, finite-size effects, and contaminations from excited states, are inherent in any lattice calculation. Simulations with controlled systematic uncertainties and close to the physical pion mass have become state-of-the-art. We present such a calculation for various hadronic matrix elements using non-perturbatively O(a)-improved Wilson fermions with two dynamical light quark flavours. The main topics covered in this thesis are the axial charge of the nucleon, the electro-magnetic form factors of the nucleon, and the leading hadronic contributions to the anomalous magnetic moment of the muon. Lattice simulations typically tend to underestimate the axial charge of the nucleon by 5 − 10%. We show that including excited state contaminations using the summed operator insertion method leads to agreement with the experimentally determined value. Further studies of systematic uncertainties reveal only small discretisation effects. For the electro-magnetic form factors of the nucleon, we see a similar contamination from excited states as for the axial charge. The electro-magnetic radii, extracted from a dipole fit to the momentum dependence of the form factors, show no indication of finite-size or cutoff effects. If we include excited states using the summed operator insertion method, we achieve better agreement with the radii from phenomenology. The anomalous magnetic moment of the muon can be measured and predicted to very high precision. The theoretical prediction of the anomalous magnetic moment receives contribution from strong, weak, and electro-magnetic interactions, where the hadronic contributions dominate the uncertainties. A persistent 3σ tension between the experimental determination and the theoretical calculation is found, which is considered to be an indication for physics beyond the Standard Model. We present a calculation of the connected part of the hadronic vacuum polarisation using lattice QCD. Partially twisted boundary conditions lead to a significant improvement of the vacuum polarisation in the region of small momentum transfer, which is crucial in the extraction of the hadronic vacuum polarisation.
Resumo:
Produktionsmechanismen für Teilchenproduktion im mittleren Energiebereich wurden in Proton-Proton Kollisionen innerhalb der COMPASS-Kollaboration mit Hilfe des COMPASS-Spektrometers am SPS Beschleuniger am CERN untersucht. Die verschiedenen Produktionsmechanismen werden mittels Produktion der Vektormesonen omega und phi studiert und können die diffraktive Anregung des Strahlteilchens mit anschliessendem Zerfall der Resonanz, zentrale Produktion und den damit verwandten “Shake-off” Mechanismus enthalten. Die für diese Arbeit verwendeten Daten wurden in den Jahren 2008 und 2009 mit 190 GeV/c-Protonen aufgenommen, die auf ein Flüssigwasserstofftarget trafen. Das Target war von einem Rückstoßprotonendetektor umgeben, der ein integraler Bestandteil des neuentwickelten Hadrontriggersystems ist. Für dieses System wurden außerdem einige neue Detektoren gebaut. Die Leistungsfähigkeit des Rückstoßprotonendetektors und des Triggersystems wird untersucht und Effizienzen extrahiert. Außerdem wird sowohl eine Methode zur Rekonstruktion von Rückstoßprotonen als auch eine Methode zur Kalibration des Rückstoßprotonendetektors entwickelt und beschrieben. Die Produktion von omega-Mesonen wurde in der Reaktion pp -> p omega p, omega -> pi+pi-pi0 und die Produktion von phi-Mesonen in der Reaktion pp -> p phi p, phi -> K+K- bei einem Impulsübertrag zwischen 0.1 (GeV/c)^2 und 1 (GeV/c)^2 gemessen. Das Produktionsverhältnis s(pp -> p phi p)/s(pp -> p omega p) wird als Funktion des longitudinalen Impulsanteils xF bestimmt und mit der Vorhersage durch die Zweigregel verglichen. Es ergibt sich eine signifikante Verletzung der Zweigregel, die abhängig von xF ist. Die Verletzung wird in Verbindung zu resonanten Strukturen im pomega-Massenspektrum diskutiert. Die xF-Abhängigkeit verschwindet, wenn man die Region niedriger pomega- und pphi-Masse entfernt, die solche resonanten Strukturen aufweist. Zusätzlich wird die Spinausrichtung bzw. das Spindichtematrixelement rho00 für omega- und phi-Mesonen untersucht. Die Spinausrichtung wird im Helizitätssystemrnanalysiert, welches für eine Abgrenzung von resonanten, diffraktiven Anregungen geeignet ist. Außerdem wird die Spinausrichtung in einem Referenzsystem mit Bezug auf die Richtung des Impulsübertrags untersucht, mit dessen Hilfe zentrale Prozesse wie zentrale Produktion oder “shake-off” abgegrenzt werden. Auch hier wird eine Abhängigkeit von xF und der invarianten Masse des pomega-Systems beobachtet. Diese Abhängigkeit kann wieder auf die resonanten Strukturen in der Produktion von omega-Mesonen zurückgeführt werden. Die Ergebnisse werden abschließend im Hinblick auf die verschiedenen Produktionsmechanismen diskutiert.
Resumo:
Die Quantenchromodynamik ist die zugrundeliegende Theorie der starken Wechselwirkung und kann in zwei Bereiche aufgeteilt werden. Harte Streuprozesse, wie zum Beispiel die Zwei-Jet-Produktion bei hohen invarianten Massen, können störungstheoretisch behandelt und berechnet werden. Bei Streuprozessen mit niedrigen Impulsüberträgen hingegen ist die Störungstheorie nicht mehr anwendbar und phänemenologische Modelle werden für Vorhersagen benutzt. Das ATLAS Experiment am Large Hadron Collider am CERN ermöglicht es, QCD Prozesse bei hohen sowie niedrigen Impulsüberträgen zu untersuchen. In dieser Arbeit werden zwei Analysen vorgestellt, die jeweils ihren Schwerpunkt auf einen der beiden Regime der QCD legen:rnDie Messung von Ereignisformvariablen bei inelastischen Proton--Proton Ereignissen bei einer Schwerpunktsenergie von $sqrt{s} = unit{7}{TeV}$ misst den transversalen Energiefluss in hadronischen Ereignissen. rnDie Messung des zweifachdifferentiellen Zwei-Jet-Wirkungsquerschnittes als Funktion der invarianten Masse sowie der Rapiditätsdifferenz der beiden Jets mit den höchsten Transversalimpulsen kann genutzt werden um Theorievorhersagen zu überprüfen. Proton--Proton Kollisionen bei $sqrt{s} = unit{8}{TeV}$, welche während der Datennahme im Jahr 2012 aufgezeichnet wurden, entsprechend einer integrierten Luminosität von $unit{20.3}{fb^{-1}}$, wurden analysiert.rn
Resumo:
A Hall thruster, an E × B device used for in-space propulsion, utilizes an axial electric field to electrostatically accelerate plasma propellant from the spacecraft. The axial electric field is created by positively biasing the anode so that the positivelycharged ions may be accelerated (repelled) from the thruster, which produces thrust. However, plasma electrons are much smaller than ions and may be accelerated much more quickly toward the anode; if electrons were not impeded, a "short circuit" due to the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field serves to "magnetize" plasma electrons internal to the thruster and confines them in gyro-orbits within the discharge channel. Without outside factors electrons would be confined indefinitely; however, electron-neutral collisions provide a mechanism to free electrons from their orbits allowing electrons to cross the magnetic field toward the anode, where this process is described by classical transport theory. To make matters worse, cross-field electron transport has been observed to be 100-1000 times that predicted by classical collisional theory, providing an efficiency loss mechanism and an obstacle for modeling and simulations in Hall thrusters. The main difficulty in studying electron transport in Hall thrusters is the coupling that exists between the plasma and the fields, where the plasma creates and yet is influenced by the electric field. A device has been constructed at MTU’s Isp Lab, the Hall Electron Mobility Gage, which was designed specifically to study electron transport in E × B devices, where the coupling between the plasma and electric field was virtually eliminated. In this device the two most cited contributors to electron transport in Hall thrusters, fluctuation-induced transport, and wall effects, were absent. Removing the dielectric walls and plasma fluctuations, while maintaining the field environment in vacuum, has allowed the study of electron dynamics in Hall thruster fields where the electrons behave as test particles in prescribed fields, greatly simplifying the environment. Therefore, it was possible to observe any effects on transport not linked to the cited mechanisms, and it was possible to observe trends of the enhanced mobility with control parameters of electric and magnetic fields and neutral density– parameters that are not independently variable in a Hall thruster. The result of the investigation was the observation of electron transport that was ~ 20-100 times the classical prediction. The cross-field electron transport in the Mobility Gage was generally lower than that found in a Hall thruster so these findings do not negate the possibility of fluctuations and/or wall collisions contributing to transport in a Hall thruster. However, this research led to the observation of enhanced cross-field transport that had not been previously isolated in Hall thruster fields, which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.
Resumo:
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the lightquark masses, the form factor f+(0), arising in semileptonic K → π transition at zero momentum transfer, as well as the decay-constant ratio fK / fπ of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)L × SU(2)R and SU(3)L×SU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant αs.
Resumo:
We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the e+e−→3π cross section, generalizing previous studies on ω,ϕ→3π decays and γπ→ππ scattering, and verify our result by comparing to e+e−→π0γ data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below 1GeV, and extract the slope of the form factor at vanishing momentum transfer aπ=(30.7±0.6)×10−3. We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.
Resumo:
A measurement of the total pp cross section at the LHC at √s = 7 TeV is presented. In a special run with high-β* beam optics, an integrated luminosity of 80 μb−1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t . The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t | range from 0.01 GeV2 to 0.1 GeV2 to extrapolate to |t | →0, the total cross section, σtot(pp→X), is measured via the optical theorem to be: σtot(pp→X) = 95.35± 0.38 (stat.)± 1.25 (exp.)± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t | → 0. In addition, the slope of the elastic cross section at small |t | is determined to be B = 19.73 ±0.14 (stat.) ±0.26 (syst.) GeV−2.
Resumo:
The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ⟩ϕ=1.11±0.10(stat)±0.18(syst)×10−38 cm2/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10−38 cm2/nucleon and the GENIE prediction is 1.08×10−38 cm2/nucleon. The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.
Resumo:
Among resummation techniques for perturbative QCD in the context of collider and flavor physics, soft-collinear effective theory (SCET) has emerged as both a powerful and versatile tool, having been applied to a large variety of processes, from B-meson decays to jet production at the LHC. This book provides a concise, pedagogical introduction to this technique. It discusses the expansion of Feynman diagrams around the high-energy limit, followed by the explicit construction of the effective Lagrangian - first for a scalar theory, then for QCD. The underlying concepts are illustrated with the quark vector form factor at large momentum transfer, and the formalism is applied to compute soft-gluon resummation and to perform transverse-momentum resummation for the Drell-Yan process utilizing renormalization group evolution in SCET. Finally, the infrared structure of n-point gauge-theory amplitudes is analyzed by relating them to effective-theory operators. This text is suitable for graduate students and non-specialist researchers alike as it requires only basic knowledge of perturbative QCD.
Resumo:
Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA’s Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), led by the Astronomical Institute of the University of Bern (AIUB), addresses this problem. The goal of the project is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). The In-Orbit Tumbling Analysis tool (ιOTA) is a prototype software, currently in development by Hyperschall Technologie Göttingen GmbH (HTG) within the framework of the project. ιOTA will be a highly modular software tool to perform short-(days), medium-(months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour, magnetic torquer activity and thruster firing. The purpose of ιOTA is to provide high accuracy short-term simulations to support observers and potential ADR missions, as well as medium-and long-term simulations to study the significance of the particular internal and external influences on the attitude, especially damping factors and momentum transfer. The simulation will also enable the investigation of the altitude dependency of the particular external influences. ιOTA's post-processing modules will generate synthetic measurements for observers and for software validation. The validation of the software will be done by cross-calibration with observations and measurements acquired by the project partners.
Resumo:
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We apply Chiral Perturbation Theory in the p-regime and introduce the twist by means of a constant vector field. The corrections of masses, decay constants, pseudoscalar coupling constants and form factors are calculated at next-to-leading order. We detail the derivations and compare with results available in the literature. In some case there is disagreement due to a different treatment of new extra terms generated from the breaking of the cubic invariance. We advocate to treat such terms as renormalization terms of the twisting angles and reabsorb them in the on-shell conditions. We confirm that the corrections of masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. Furthermore, we show that the matrix elements of the scalar (resp. vector) form factor satisfies the Feynman–Hellman Theorem (resp. the Ward–Takahashi identity). To show the Ward–Takahashi identity we construct an effective field theory for charged pions which is invariant under electromagnetic gauge transformations and which reproduces the results obtained with Chiral Perturbation Theory at a vanishing momentum transfer. This generalizes considerations previously published for periodic boundary conditions to twisted boundary conditions. Another method to estimate the corrections in finite volume are asymptotic formulae. Asymptotic formulae were introduced by Lüscher and relate the corrections of a given physical quantity to an integral of a specific amplitude, evaluated in infinite volume. Here, we revise the original derivation of Lüscher and generalize it to finite volume with twisted boundary conditions. In some cases, the derivation involves complications due to extra terms generated from the breaking of the cubic invariance. We isolate such terms and treat them as renormalization terms just as done before. In that way, we derive asymptotic formulae for masses, decay constants, pseudoscalar coupling constants and scalar form factors. At the same time, we derive also asymptotic formulae for renormalization terms. We apply all these formulae in combination with Chiral Perturbation Theory and estimate the corrections beyond next-to-leading order. We show that asymptotic formulae for masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. A similar relation connects in an independent way asymptotic formulae for renormalization terms. We check these relations for charged pions through a direct calculation. To conclude, a numerical analysis quantifies the importance of finite volume corrections at next-to-leading order and beyond. We perform a generic Analysis and illustrate two possible applications to real simulations.
Resumo:
Este trabajo esta dedicado al estudio de las estructuras macroscópicas conocidas en la literatura como filamentos o blobs que han sido observadas de manera universal en el borde de todo tipo de dispositivos de fusión por confinamiento magnético. Estos filamentos, celdas convectivas elongadas a lo largo de las líneas de campo que surgen en el plasma fuertemente turbulento que existe en este tipo de dispositivos, parecen dominar el transporte radial de partículas y energía en la región conocida como Scrape-off Layer, en la que las líneas de campo dejan de estar cerradas y el plasma es dirigido hacia la pared sólida que forma la cámara de vacío. Aunque el comportamiento y las leyes de escala de estas estructuras son relativamente bien conocidos, no existe aún una teoría generalmente aceptada acerca del mecanismo físico responsable de su formación, que constituye una de las principales incógnitas de la teoría de transporte del borde en plasmas de fusión y una cuestión de gran importancia práctica en el desarrollo de la siguiente generación de reactores de fusión (incluyendo dispositivos como ITER y DEMO), puesto que la eficiencia del confinamiento y la cantidad de energía depositadas en la pared dependen directamente de las características del transporte en el borde. El trabajo ha sido realizado desde una perspectiva eminentemente experimental, incluyendo la observación y el análisis de este tipo de estructuras en el stellarator tipo heliotrón LHD (un dispositivo de gran tamaño, capaz de generar plasmas de características cercanas a las necesarias en un reactor de fusión) y en el stellarator tipo heliac TJ-II (un dispositivo de medio tamaño, capaz de generar plasmas relativamente más fríos pero con una accesibilidad y disponibilidad de diagnósticos mayor). En particular, en LHD se observó la generación de filamentos durante las descargas realizadas en configuración de alta _ (alta presión cinética frente a magnética) mediante una cámara visible ultrarrápida, se caracterizó su comportamiento y se investigó, mediante el análisis estadístico y la comparación con modelos teóricos, el posible papel de la Criticalidad Autoorganizada en la formación de este tipo de estructuras. En TJ-II se diseñó y construyó una cabeza de sonda capaz de medir simultáneamente las fluctuaciones electrostáticas y electromagnéticas del plasma. Gracias a este nuevo diagnóstico se pudieron realizar experimentos con el fin de determinar la presencia de corriente paralela a través de los filamentos (un parámetro de gran importancia en su modelización) y relacionar los dos tipos de fluctuaciones por primera vez en un stellarator. Así mismo, también por primera vez en este tipo de dispositivo, fue posible realizar mediciones simultáneas de los tensores viscoso y magnético (Reynolds y Maxwell) de transporte de cantidad de movimiento. ABSTRACT This work has been devoted to the study of the macroscopic structures known in the literature as filaments or blobs, which have been observed universally in the edge of all kind of magnetic confinement fusion devices. These filaments, convective cells stretching along the magnetic field lines, arise from the highly turbulent plasma present in this kind of machines and seem to dominate radial transport of particles and energy in the region known as Scrapeoff Layer, in which field lines become open and plasma is directed towards the solid wall of the vacuum vessel. Although the behavior and scale laws of these structures are relatively well known, there is no generally accepted theory about the physical mechanism involved in their formation yet, which remains one of the main unsolved questions in the fusion plasmas edge transport theory and a matter of great practical importance for the development of the next generation of fusion reactors (including ITER and DEMO), since efficiency of confinement and the energy deposition levels on the wall are directly dependent of the characteristics of edge transport. This work has been realized mainly from an experimental perspective, including the observation and analysis of this kind of structures in the heliotron stellarator LHD (a large device capable of generating reactor-relevant plasma conditions) and in the heliac stellarator TJ-II (a medium-sized device, capable of relatively colder plasmas, but with greater ease of access and diagnostics availability). In particular, in LHD, the generation of filaments during high _ discharges (with high kinetic to magnetic pressure ratio) was observed by means of an ultrafast visible camera, and the behavior of this structures was characterized. Finally, the potential role of Self-Organized Criticality in the generation of filaments was investigated. In TJ-II, a probe head capable of measuring simultaneously electrostatic and electromagnetic fluctuations in the plasma was designed and built. Thanks to this new diagnostic, experiments were carried out in order to determine the presence of parallel current through filaments (one of the most important parameters in their modelization) and to related electromagnetic (EM) and electrostatic (ES) fluctuations for the first time in an stellarator. As well, also for the first time in this kind of device, measurements of the viscous and magnetic momentum transfer tensors (Reynolds and Maxwell) were performed.
Resumo:
Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion-generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.
Crack mechanical failure in ceramic materials under ion irradiation: case of lithium niobate crystal
Resumo:
Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion- generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.