985 resultados para Molecular volume.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical ventilation is the major cause of iatrogenic lung damage in intensive care units. Although inflammation is known to be involved in ventilator-induced lung injury (VILI), several aspects of this process are still unknown. Pentraxin 3 (PTX3) is an acute phase protein with important regulatory functions in inflammation which has been found elevated in patients with acute respiratory distress syndrome. This study aimed at investigating the direct effect of PTX3 production in the pathogenesis of VILI. Genetically modified mice deficient and that over express murine Ptx3 gene were subjected to high tidal volume ventilation (V-T = 45 mL/kg, PEEPzero). Morphological changes and time required for 50% increase in respiratory system elastance were evaluated. Gene expression profile in the lungs was also investigated in earlier times in Ptx3-overexpressing mice. Ptx3 knockout and wild-type mice developed same lung injury degree in similar times (156 +/- 42 min and 148 +/- 41 min, respectively: p = 0.8173). However, Ptx3 overexpression led to a faster development of VILI in Ptx3-overexpressing mice (77 +/- 29 min vs 118 +/- 41 min, p = 0.0225) which also displayed a faster kinetics of Il1b expression and elevated Ptx3, Cxcl1 and Ccl2 transcripts levels in comparison with wild-type mice assessed by quantitative real-time polymerase chain reaction. Ptx3 deficiency did not impacted the time for VILI induced by high tidal volume ventilation but Ptx3-overexpression increased inflammatory response and reflected in a faster VILI development. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit wurden Simulation von Flüssigkeiten auf molekularer Ebene durchgeführt, wobei unterschiedliche Multi-Skalen Techniken verwendet wurden. Diese erlauben eine effektive Beschreibung der Flüssigkeit, die weniger Rechenzeit im Computer benötigt und somit Phänomene auf längeren Zeit- und Längenskalen beschreiben kann.rnrnEin wesentlicher Aspekt ist dabei ein vereinfachtes (“coarse-grained”) Modell, welches in einem systematischen Verfahren aus Simulationen des detaillierten Modells gewonnen wird. Dabei werden ausgewählte Eigenschaften des detaillierten Modells (z.B. Paar-Korrelationsfunktion, Druck, etc) reproduziert.rnrnEs wurden Algorithmen untersucht, die eine gleichzeitige Kopplung von detaillierten und vereinfachten Modell erlauben (“Adaptive Resolution Scheme”, AdResS). Dabei wird das detaillierte Modell in einem vordefinierten Teilvolumen der Flüssigkeit (z.B. nahe einer Oberfläche) verwendet, während der Rest mithilfe des vereinfachten Modells beschrieben wird.rnrnHierzu wurde eine Methode (“Thermodynamische Kraft”) entwickelt um die Kopplung auch dann zu ermöglichen, wenn die Modelle in verschiedenen thermodynamischen Zuständen befinden. Zudem wurde ein neuartiger Algorithmus der Kopplung beschrieben (H-AdResS) der die Kopplung mittels einer Hamilton-Funktion beschreibt. In diesem Algorithmus ist eine zur Thermodynamischen Kraft analoge Korrektur mit weniger Rechenaufwand möglich.rnrnAls Anwendung dieser grundlegenden Techniken wurden Pfadintegral Molekulardynamik (MD) Simulationen von Wasser untersucht. Mithilfe dieser Methode ist es möglich, quantenmechanische Effekte der Kerne (Delokalisation, Nullpunktsenergie) in die Simulation einzubeziehen. Hierbei wurde zuerst eine Multi-Skalen Technik (“Force-matching”) verwendet um eine effektive Wechselwirkung aus einer detaillierten Simulation auf Basis der Dichtefunktionaltheorie zu extrahieren. Die Pfadintegral MD Simulation verbessert die Beschreibung der intra-molekularen Struktur im Vergleich mit experimentellen Daten. Das Modell eignet sich auch zur gleichzeitigen Kopplung in einer Simulation, wobei ein Wassermolekül (beschrieben durch 48 Punktteilchen im Pfadintegral-MD Modell) mit einem vereinfachten Modell (ein Punktteilchen) gekoppelt wird. Auf diese Weise konnte eine Wasser-Vakuum Grenzfläche simuliert werden, wobei nur die Oberfläche im Pfadintegral Modell und der Rest im vereinfachten Modell beschrieben wird.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In questa tesi viene presentato un bioreattore in grado di mantenere nel tempo condizioni biologiche tali che consentano di massimizzare i cicli di evoluzione molecolare di vettori di clonazione fagici: litico (T7) o lisogeno (M13). Verranno quindi introdtti concetti legati alla Teoria della Quasispecie e alla relazione tra errori di autoreplicazione e pressioni selettive naturali o artificiali su popolazioni di virus: il modello naturale del sistema evolutivo. Tuttavia, mantenere delle popolazioni di virus significa formire loro un substrato dove replicare. Per fare ciò, altri gruppi di ricerca hanno giá sviluppato complessi e costosi prototipi di macchinari per la crescita continua di popolazioni batteriche: i compartimenti dei sistemi evolutivi. Il bioreattore, oggetto di questo lavoro, fa parte del progetto europeo Evoprog: general purpose programmable machine evolution on a chip (Jaramillo’s Lab, University of Warwick) che, utilizzando tecnologie fagiche e regolazioni sintetiche esistenti, sará in grado di produrre funzionalità biocomputazionali di due ordini di grandezza più veloci rispetto alle tecniche convenzionali, riducendo allo stesso tempo i costi complessivi. Il primo prototipo consiste in uno o piú fermentatori, dove viene fatta crescere la cultura batterica in condizioni ottimizzate di coltivazione continua, e in un cellstat, un volume separato, dove avviene solo la replicazione dei virus. Entrambi i volumi sono di pochi millilitri e appropriatamente interconnessi per consentire una sorta di screening continuo delle biomolecole prodotte all’uscita. Nella parte finale verranno presentati i risultati degli esperimenti preliminari, a dimostrazione dell’affidabilità del prototipo costruito e dei protocolli seguiti per la sterilizzazione e l’assemblaggio del bioreattore. Gli esperimenti effettuati dimostrano il successo di due coltivazioni virali continue e una ricombinazione in vivo di batteriofagi litici o lisogeni ingegnerizzati. La tesi si conclude valutando i futuri sviluppi e i limiti del sistema, tenendo in considerazione, in particolare, alcune applicazioni rivolte agli studi di una terapia batteriofagica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the changes in blood volume and hormones controlling sodium and water homeostasis after infusions of 0.9% saline, Gelofusine (4% succinylated gelatin in 0.7% saline, weight-average molecular weight 30 kD), and Voluven (6% hydroxyethyl starch in 0.9% saline, weight-average molecular weight 130 kD) in healthy volunteers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reprogramming of gene expression contributes to structural and functional adaptation of muscle tissue in response to altered use. The aim of this study was to investigate mechanisms for observed improvements in leg extension strength, gain in relative thigh muscle mass and loss of body and thigh fat content in response to eccentric and conventional strength training in elderly men (n = 14) and women (n = 14; average age of the men and women: 80.1 ± 3.7 years) by means of structural and molecular analyses. Biopsies were collected from m. vastus lateralis in the resting state before and after 12 weeks of training with two weekly resistance exercise sessions (RET) or eccentric ergometer sessions (EET). Gene expression was analyzed using custom-designed low-density PCR arrays. Muscle ultrastructure was evaluated using EM morphometry. Gain in thigh muscle mass was paralleled by an increase in muscle fiber cross-sectional area (hypertrophy) with RET but not with EET, where muscle growth is likely occurring by the addition of sarcomeres in series or by hyperplasia. The expression of transcripts encoding factors involved in muscle growth, repair and remodeling (e.g., IGF-1, HGF, MYOG, MYH3) was increased to a larger extent after EET than RET. MicroRNA 1 expression was decreased independent of the training modality, and was paralleled by an increased expression of IGF-1 representing a potential target. IGF-1 is a potent promoter of muscle growth, and its regulation by microRNA 1 may have contributed to the gain of muscle mass observed in our subjects. EET depressed genes encoding mitochondrial and metabolic transcripts. The changes of several metabolic and mitochondrial transcripts correlated significantly with changes in mitochondrial volume density. Intramyocellular lipid content was decreased after EET concomitantly with total body fat. Changes in intramyocellular lipid content correlated with changes in body fat content with both RET and EET. In the elderly, RET and EET lead to distinct molecular and structural adaptations which might contribute to the observed small quantitative differences in functional tests and body composition parameters. EET seems to be particularly convenient for the elderly with regard to improvements in body composition and strength but at the expense of reducing muscular oxidative capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EPON 862 is an epoxy resin which is cured with the hardening agent DETDA to form a crosslinked epoxy polymer and is used as a component in modern aircraft structures. These crosslinked polymers are often exposed to prolonged periods of temperatures below glass transition range which cause physical aging to occur. Because physical aging can compromise the performance of epoxies and their composites and because experimental techniques cannot provide all of the necessary physical insight that is needed to fully understand physical aging, efficient computational approaches to predict the effects of physical aging on thermo-mechanical properties are needed. In this study, Molecular Dynamics and Molecular Minimization simulations are being used to establish well-equilibrated, validated molecular models of the EPON 862-DETDA epoxy system with a range of crosslink densities using a united-atom force field. These simulations are subsequently used to predict the glass transition temperature, thermal expansion coefficients, and elastic properties of each of the crosslinked systems for validation of the modeling techniques. The results indicate that glass transition temperature and elastic properties increase with increasing levels of crosslink density and the thermal expansion coefficient decreases with crosslink density, both above and below the glass transition temperature. The results also indicate that there may be an upper limit to crosslink density that can be realistically achieved in epoxy systems. After evaluation of the thermo-mechanical properties, a method is developed to efficiently establish molecular models of epoxy resins that represent the corresponding real molecular structure at specific aging times. Although this approach does not model the physical aging process, it is useful in establishing a molecular model that resembles the physically-aged state for further use in predicting thermo-mechanical properties as a function of aging time. An equation has been predicted based on the results which directly correlate aging time to aged volume of the molecular model. This equation can be helpful for modelers who want to study properties of epoxy resins at different levels of aging but have little information about volume shrinkage occurring during physical aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much previous research has demonstrated the plasticity of myoglobin concentrations in both cardiac and skeletal myocytes in response to hypoxia and training. No study has yet looked at the effect of thermal acclimation on myoglobin in fish. Atlantic cod (Gadus morhua) from two different populations, i.e. the North Sea and the North East Arctic, were acclimated to 10 and 4 degrees C. Both the myoglobin mRNA and myoglobin protein in cod hearts increased significantly by up to 3.7 and 2.3 fold respectively as a result of acclimation to 4 degrees C. These increments were largest in the Arctic population, which in earlier studies have been shown to possess cold compensated metabolic demands at low temperatures. These metabolic demands associated with higher mitochondrial capacities may have driven the increase in cardiac myoglobin concentrations, in order to support diffusive oxygen supply. At the same time the increase in myoglobin levels may serve further functions during cold acclimation, for example, protection of the cell against reactive oxygen species, and scavenging nitric oxide, thereby contributing to the regulation of mitochondrial volume density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, declines of honey bee populations have received massive media attention worldwide, yet attempts to understand the causes have been hampered by a lack of standardisation of laboratory techniques. Published as a response to this, the COLOSS BEEBOOK is a unique collaborative venture involving 234 bee scientists from 34 countries, who have produced the definitive guide to how to carry out research on honey bees. It is hoped that these volumes will become the standards to be adopted by bee scientists worldwide. Volume I includes approximately 1,100 separate protocols dealing with the study of the honey bee, Apis mellifera. These cover anatomy, behavioural studies, chemical ecology, breeding, genetics, instrumental insemination and queen rearing, pollination, molecular studies, statistics, toxicology and numerous other techniques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Cardiac myocytes utilize three high-capacity Na transport processes whose precise function can determine myocyte fate and the triggering of arrhythmias in pathological settings. We present recent results on the regulation of all three transporters that may be important for an understanding of cardiac function during ischemia/reperfusion episodes. METHODS AND RESULTS Refined ion selective electrode (ISE) techniques and giant patch methods were used to analyze the function of cardiac Na/K pumps, Na/Ca exchange (NCX1), and Na/H exchange (NHE1) in excised cardiac patches and intact myocytes. To consider results cohesively, simulations were developed that account for electroneutrality of the cytoplasm, ion homeostasis, water homeostasis (i.e., cell volume), and cytoplasmic pH. The Na/K pump determines the average life-time of Na ions (3-10 minutes) as well as K ions (>30 minutes) in the cytoplasm. The long time course of K homeostasis can determine the time course of myocyte volume changes after ion homeostasis is perturbed. In excised patches, cardiac Na/K pumps turn on slowly (-30 seconds) with millimolar ATP dependence, when activated for the first time. In steady state, however, pumps are fully active with <0.2 mM ATP and are nearly unaffected by high ADP (2 mM) and Pi (10 mM) concentrations as may occur in ischemia. NCX1s appear to operate with slippage that contributes to background Na influx and inward current in heart. Thus, myocyte Na levels may be regulated by the inactivation reactions of the exchanger which are both Na- and proton-dependent. NHE1 also undergo strong Na-dependent inactivation, whereby a brief rise of cytoplasmic Na can cause inactivation that persists for many minutes after cytoplasmic Na is removed. This mechanism is blocked by pertussis toxin, suggesting involvement of a Na-dependent G-protein. Given that maximal NCX1- and NHE1-mediated ion fluxes are much greater than maximal Na/K pump-mediated Na extrusion in myocytes, the Na-dependent inactivation mechanisms of NCX1 and NHE1 may be important determinants of cardiac Na homeostasis. CONCLUSIONS Na/K pumps appear to be optimized to continue operation when energy reserves are compromised. Both NCX1 and NHE1 activities are regulated by accumulation of cytoplasmic Na. These principles may importantly control cardiac cytoplasmic Na and promote myocyte survival during ischemia/reperfusion episodes by preventing Ca overload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) protein has the ability to function as both a chloride channel and a channel regulator. The loss of these functions explains many of the manifestations of the cystic fibrosis disease (CF), including lung and pancreatic failure, meconium ileus, and male infertility. CFTR has previously been implicated in the cell regulatory volume decrease (RVD) response after hypotonic shocks in murine small intestine crypts, an effect associated to the dysfunction of an unknown swelling-activated potassium conductance. In the present study, we investigated the RVD response in human tracheal CF epithelium and the nature of the volume-sensitive potassium channel affected. Neither the human tracheal cell line CFT1, expressing the mutant CFTR-ΔF508 gene, nor the isogenic vector control line CFT1-LC3, engineered to express the βgal gene, showed RVD. On the other hand, the cell line CFT1-LCFSN, engineered to express the wild-type CFTR gene, presented a full RVD. Patch-clamp studies of swelling-activated potassium currents in the three cell lines revealed that all of them possess a potassium current with the biophysical and pharmacological fingerprints of the intermediate conductance Ca2+-dependent potassium channel (IK, also known as KCNN4). However, only CFT1-LCFSN cells showed an increase in IK currents in response to hypotonic challenges. Although the identification of the molecular mechanism relating CFTR to the hIK channel remains to be solved, these data offer new evidence on the complex integration of CFTR in the cells where it is expressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O estudo da microestrutura e dinâmica molecular de polímeros conjugados é de grande importância para o entendimento das propriedades físicas desta classe de materiais. No presente trabalho utilizou-se técnicas de ressonância magnética nuclear em baixo e alto campo para elucidar os processos de dinâmica molecular e cristalização do polímero Poly(3-(2’-ethylhexyl)thiophene) - P3EHT. O P3EHT é um polímero modelo para tal estudo, pois apresenta temperatura de fusão bem inferior a sua temperatura de degradação. Esta característica permite acompanhar os processos de cristalização in situ utilizando RMN. Além disso, sua similaridade ao já popular P3HT o torna um importante candidato a camada ativa em dispositivos eletrônicos orgânicos. O completo assinalamento do espectro de 13C para o P3EHT foi realizado utilizando as técnicas de defasamento dipolar e HETCOR. Os processos de dinâmica molecular, por sua vez, foram sondados utilizando DIPSHIFT. Observou-se um gradiente de mobilidade na cadeia lateral do polímero. Além disso, os baixos valores de parametros de ordem obtidos em comparação a experimentos similares realizados no P3HT na literatura indicam um aparente aumento no volume livre entre cadeias consecutivas na fase cristalina. Isso indica que a presença do grupo etil adicional no P3EHT causa um completo rearranjo das moléculas e dificulta seu empacotamento. Constatou-se ainda pouca variação das curvas de DIPSHIFT para os carbonos da cadeia lateral como função do método de excitação utilizado, o que aponta para um polímero que apresenta cadeia lateral móvel mesmo em sua fase cristalina. Os dados de dinâmica molecular foram corroborados por medidas de T1, T1ρ e TCH. Utilizando filtros dipolares em baixo campo observou-se três temperaturas de transição para o P3EHT: 250 K, 325 K e 350 K. A cristalização desse material é um processo lento. Verificou-se que o mesmo pode se estender por até até 24h a temperatura ambiente. Mudanças no espectro de 13C utilizando CPMAS em alto campo indicam um ordenamento dos anéis tiofeno (empacotamento π – π) como o principal processo de cristalização para o P3EHT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon molecular sieve membranes have been analyzed in supported and unsupported configurations in this experimental study. The membranes were used to adsorb CO2, N2 and CH4, and their adsorption data were analyzed to establish differences in rate and capacity of adsorption between the two types of samples (supported and unsupported). Experimental results show an important effect of the support, which can be considered as an additional parameter to tailor pore size on these carbon membranes. Immersion calorimetry values were measured by immersing the membranes into liquids of different molecular dimensions (dichloromethane, benzene, n-hexane, 2,2-dimethylbutane). Similarities were found between adsorption and calorimetric analysis. The pore volume of the samples analyzed ranged from 0.016 to 0.263 cm3/g. The effect of the pyrolysis temperature, either 550 or 700 °C, under N2 atmosphere was also analyzed. Quantification of the pore-size distribution of the support was done by liquid-liquid displacement porosimetry. The composite membrane was used for CO2/CH4 separation before and after pore plugging was done. The ideal selectivity factors value (4.47) was over the Knudsen theoretical factor (0.60) for membrane pyrolyzed at 600 °C, which indicates the potential application of these membranes for the separation of low-molecular weight gases.