995 resultados para Molecular designed dispersion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sexual development prior to gonadal sex differentiation is regulated by various molecular mechanisms. In fish, a molecular sex-differentiation period has been identified in species for which sex can be ascertained prior to gonadal sex differentiation. The present study was designed to identify such a period in a species for which no genetic sex markers or monosex populations are available. Siberian sturgeons undergo a slow sex-differentiation process over several months, so gonad morphology and gene expression was tracked in fish from ages 3-27 months to identify the sex-differentiation period. The genes amh, sox9, and dmrt1 were selected as male gonad markers; cyp19a1a and foxl2a as female gonad markers; and cyp17a1 and ar as markers of steroid synthesis and steroid receptivity. Sex differentiation occurred at 8 months, and was preceded by a molecular sex-differentiation period at 3-4 months, at which time all of the genes except ar showed clear expression peaks. amh and sox9 expression seemed to be involved in male sexual development whereas dmrt1, a gene involved in testis development in metazoans, unexpectedly showed a pattern similar to those of the genes known to be involved in female gonadal sex differentiation (cyp19a1 and foxl2a). In conclusion, the timing of and gene candidates involved with molecular sex differentiation in the Siberian sturgeon were identified. Mol. Reprod. Dev. 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study aimed to evaluate the photoprotective effects of cosmetic formulations containing a dispersion of liposome with magnesium ascorbyl phosphate (MAP), alpha-lipoic acid (ALA) and kinetin, as well as their effects on the hydration and viscoelastic skin properties. The photoprotection was determined in vitro (antioxidant activity) and in vivo on UV-irradiated hairless mouse skin. The hydration effects were performed with the application of the formulations under study on the forearm of human volunteers and skin conditions were analyzed before and after a single application and daily applications during 4 weeks in terms of transepidermal water loss (TEWL), skin moisture and viscoelastic properties. The raw material under study possessed free-radical scavenging activity and the formulation with it protected hairless mouse skin barrier function against UV damage. After 4 weeks of application on human skin, the formulation under study enhanced stratum corneum skin moisture and also showed hydration effects in deeper layers of the skin. Thus, it can be concluded that the cosmetic formulation containing a dispersion of liposome with MAP, ALA and kinetin under study showed photoprotective effects in skin barrier function as well as pronounced hydration effects on human skin, which suggests that this dispersion has potential antiaging effects.
Resumo:
In the field of organic thin films, manipulation at the nanoscale can be obtained by immobilization of different materials on platforms designed to enhance a specific property via the layer-by-layer technique. In this paper we describe the fabrication of nanostructured films containing cobalt tetrasulfonated phthalocyanine (CoTsPc) obtained through the layer-by-layer architecture and assembled with linear poly(allylamine hydrochloride) (PAH) and poly(amidoamine) dendrimer (PAMAM) polyelectrolytes. Film growth was monitored by UV-vis spectroscopy following the Q band of CoTsPc and revealed a linear growth for both systems. Fourier transform infrared (FTIR) spectroscopy showed that the driving force keeping the structure of the films was achieved upon interactions of CoTsPc sulfonic groups with protonated amine groups present in the positive polyelectrolyte. A comprehensive SPR investigation on film growth reproduced the deposition process dynamically and provided an estimation of the thicknesses of the layers. Both FTIR and SPR techniques suggested a preferential orientation of the Pc ring parallel to the substrate. The electrical conductivity of the PAH films deposited on interdigitated electrodes was found to be very sensitive to water vapor. These results point to the development of a phthalocyanine-based humidity sensor obtained from a simple thin film deposition technique, whose ability to tailor molecular organization was crucial to achieve high sensitivity.
Resumo:
Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization (WHO), about 1.8 million people die from TB and 10 million new cases are recorded each year. Recently, a new series of naphthylchalcones has been identified as inhibitors of Mtb protein tyrosine phosphatases (PTPs). In this work, 100 chalcones were designed, synthesized, and investigated for their inhibitory properties against MtbPtps. Structure-activity relationships (SAR) were developed, leading to the discovery of new potent inhibitors with IC50 values in the low-micromolar range. Kinetic studies revealed competitive inhibition and high selectivity toward the Mtb enzymes. Molecular modeling investigations were carried out with the aim of revealing the most relevant structural requirements underlying the binding affinity and selectivity of this series of inhibitors as potential anti-TB drugs.
Resumo:
A two-stage bioreactor was operated for a period of 140 days in order to develop a post-treatment process based on anaerobic bioxidation of sulfite. This process was designed for simultaneously treating the effluent and biogas of a full-scale UASB reactor, containing significant concentrations of NH4 and H2S, respectively. The system comprised of two horizontal-flow bed-packed reactors operated with different oxygen concentrations. Ammonium present in the effluent was transformed into nitrates in the first aerobic stage. The second anaerobic stage combined the treatment of nitrates in the liquor with the hydrogen sulfide present in the UASB-reactor biogas. Nitrates were consumed with a significant production of sulfate, resulting in a nitrate removal rate of 0.43 kg N m(3) day(-1) and a parts per thousand yen92 % efficiency. Such a removal rate is comparable to those achieved by heterotrophic denitrifying systems. Polymeric forms of sulfur were not detected (elementary sulfur); sulfate was the main product of the sulfide-based denitrifying process. S-sulfate was produced at a rate of about 0.35 kg m(3) day(-1). Sulfur inputs as S-H2S were estimated at about 0.75 kg m(3) day(-1) and Chemical Oxygen Demand (COD) removal rates did not vary significantly during the process. DGGE profiling and 16S rRNA identified Halothiobacillus-like species as the key microorganism supporting this process; such a strain has not yet been previously associated with such bioengineered systems.
Resumo:
A study was designed to investigate the molecular epidemiology of extended-spectrum -lactamase (ESBL)-producing Klebsiella pneumoniae isolated in a centralized region over a 10 year period (200009). Molecular characterization was done using isoelectric focusing, PCR and sequencing for bla(CTX-M), bla(TEM) and bla(SHV) genes and plasmid-mediated quinolone resistance determinants. Genetic relatedness was determined with PFGE using XbaI and multilocus sequencing typing. A total of 89 patients with incident infections were identified; the majority presented with hospital-onset urinary tract infections. The absolute number of ESBL-producing isolates remained very low until 2003, increased slightly in 2004, remained stable until 2008 and then in 2009 there was an abrupt increase in the numbers of ESBL producers identified. The majority of K. pneumoniae produced CTX-M-14 and -15, and have replaced SHV-12-producing isolates since 2005. We identified four different major sequence types (STs) among 32 of isolates (i.e. ST17, ST20, and the new ST573 and ST575) and provided insight into their clinical and molecular characteristics. The ST isolates were more likely to produce community-onset infections, were associated with bla(CTX-M) and emerged during the latter part of the study period. ST17 produced CTX-M-15 and SHV-12, and was more likely to be positive for qnrB; ST20 produced CTX-M-14 and was positive for qnrS. The multiresistant ST575 that produced CTX-M-15 appeared in 2009. Our study highlights the importance of molecular epidemiology in providing insight into the emergence, characteristics and distribution of STs among ESBL-producing K. pneumoniae.
Resumo:
The barred spiral galaxy M83 (NGC5236) has been observed in the 12CO J=1–0 and J=2–1 millimetre lines with the Swedish-ESO Submillimetre Telescope (SEST). The sizes of the CO maps are 100×100, and they cover the entire optical disk. The CO emission is strongly peaked toward the nucleus. The molecular spiral arms are clearly resolved and can be traced for about 360º. The total molecular gas mass is comparable to the total Hi mass, but H2 dominates in the optical disk. Iso-velocity maps show the signature of an inclined, rotating disk, but also the effects of streaming motions along the spiral arms. The dynamical mass is determined and compared to the gas mass. The pattern speed is determined from the residual velocity pattern, and the locations of various resonances are discussed. The molecular gas velocity dispersion is determined, and a trend of decreasing dispersion with increasing galactocentric radius is found. A total gas (H2+Hi+He) mass surface density map is presented, and compared to the critical density for star formation of an isothermal gaseous disk. The star formation rate (SFR) in the disk is estimated using data from various star formation tracers. The different SFR estimates agree well when corrections for extinctions, based on the total gas mass map, are made. The radial SFR distribution shows features that can be associated with kinematic resonances. We also find an increased star formation efficiency in the spiral arms. Different Schmidt laws are fitted to the data. The star formation properties of the nuclear region, based on high angular resolution HST data, are also discussed.
Resumo:
Nuclear Magnetic Resonance (NMR) is a branch of spectroscopy that is based on the fact that many atomic nuclei may be oriented by a strong magnetic field and will absorb radiofrequency radiation at characteristic frequencies. The parameters that can be measured on the resulting spectral lines (line positions, intensities, line widths, multiplicities and transients in time-dependent experi-ments) can be interpreted in terms of molecular structure, conformation, molecular motion and other rate processes. In this way, high resolution (HR) NMR allows performing qualitative and quantitative analysis of samples in solution, in order to determine the structure of molecules in solution and not only. In the past, high-field NMR spectroscopy has mainly concerned with the elucidation of chemical structure in solution, but today is emerging as a powerful exploratory tool for probing biochemical and physical processes. It represents a versatile tool for the analysis of foods. In literature many NMR studies have been reported on different type of food such as wine, olive oil, coffee, fruit juices, milk, meat, egg, starch granules, flour, etc using different NMR techniques. Traditionally, univariate analytical methods have been used to ex-plore spectroscopic data. This method is useful to measure or to se-lect a single descriptive variable from the whole spectrum and , at the end, only this variable is analyzed. This univariate methods ap-proach, applied to HR-NMR data, lead to different problems due especially to the complexity of an NMR spectrum. In fact, the lat-ter is composed of different signals belonging to different mole-cules, but it is also true that the same molecules can be represented by different signals, generally strongly correlated. The univariate methods, in this case, takes in account only one or a few variables, causing a loss of information. Thus, when dealing with complex samples like foodstuff, univariate analysis of spectra data results not enough powerful. Spectra need to be considered in their wholeness and, for analysing them, it must be taken in consideration the whole data matrix: chemometric methods are designed to treat such multivariate data. Multivariate data analysis is used for a number of distinct, differ-ent purposes and the aims can be divided into three main groups: • data description (explorative data structure modelling of any ge-neric n-dimensional data matrix, PCA for example); • regression and prediction (PLS); • classification and prediction of class belongings for new samples (LDA and PLS-DA and ECVA). The aim of this PhD thesis was to verify the possibility of identify-ing and classifying plants or foodstuffs, in different classes, based on the concerted variation in metabolite levels, detected by NMR spectra and using the multivariate data analysis as a tool to inter-pret NMR information. It is important to underline that the results obtained are useful to point out the metabolic consequences of a specific modification on foodstuffs, avoiding the use of a targeted analysis for the different metabolites. The data analysis is performed by applying chemomet-ric multivariate techniques to the NMR dataset of spectra acquired. The research work presented in this thesis is the result of a three years PhD study. This thesis reports the main results obtained from these two main activities: A1) Evaluation of a data pre-processing system in order to mini-mize unwanted sources of variations, due to different instrumental set up, manual spectra processing and to sample preparations arte-facts; A2) Application of multivariate chemiometric models in data analy-sis.
Resumo:
It was decided to carry out a morphological and molecular characterization of the Italian Alternaria isolatescollected from apple , and evaluate their pathogenicity and subsequently combining the data collected. The strain collection (174 isolates) was constructed by collecting material (received from extension service personnel) between June and August of 2007, 2008, and 2009. A Preliminary bioassays were performed on detached plant materials (fruit and leaf wounded and unwounded), belonging to the Golden cultivar, with two different kind of inoculation (conidial suspension and conidial filtrate). Symptoms were monitored daily and a value of pathogenicity score (P.S.) was assigned on the basis of the diameter of the necrotic area that developed. On the basis of the bioassays, the number of isolates to undergo further molecular analysis was restricted to a representative set of single spore strains (44 strains). Morphological characteristics of the colony and sporulation pattern were determined according to previous systematic work on small-spored Alternaria spp. (Pryor and Michaelides, 2002 and Hong et al., 2006). Reference strains (Alternaria alternata, Alternaria tenuissima, Alternaria arborescens and four Japanese strains of Alternaria alternata mali pathotype), used in the study were kindly provided by Prof. Barry Pryor, who allows a open access to his own fungal collection. Molecular characterization was performed combining and comparing different data sets obtained from distinct molecular approach: 1) investigation of specific loci and 2) fingerprinting based on diverse randomly selected polymorphic sites of the genome. As concern the single locus analysis, it was chosen to sequence the EndoPG partial gene and three anonymous region (OPA1-3, OPA2- and OPa10-2). These markers has revealed a powerful tool in the latter systematic works on small-spored Alternaria spp. In fact, as reported in literature small-spored Alternaria taxonomy is complicated due to the inability to resolve evolutionary relationships among the taxa because of the lack of variability in the markers commonly used in fungi systematic. The three data set together provided the necessary variation to establish the phylogenetic relationships among the Italian isolates of Alternaria spp. On Italian strains these markers showed a variable number of informative sites (ranging from 7 for EndoPg to 85 for OPA1-3) and the parsimony analysis produced different tree topologies all concordant to define A. arborescens as a mophyletic clade. Fingerprinting analysis (nine ISSR primers and eight AFLP primers combination) led to the same result: a monophyleic A. arborescens clade and one clade containing both A. tenuissima and the A. alternata strains. This first attempt to characterize Italian Alternaria species recovered from apple produced concordant results with what was already described in a similar phylogenetic study on pistachio (Pryor and Michaelides, 2002), on walnut and hazelnut (Hong et al., 2006), apple (Kang et al., 2002) and citurus (Peever et al., 2004). Together with these studies, this research demonstrates that the three morphological groups are widely distributed and occupy similar ecological niches. Furthermore, this research suggest that these Alternaria species exhibit a similar infection pattern despite the taxonomic and pathogenic differences. The molecular characterization of the pathogens is a fundamental step to understanding the disease that is spreading in the apple orchards of the north Italy. At the beginning the causal agent was considered as Alteraria alternata (Marshall and Bertagnoll, 2006). Their preliminary studies purposed a pathogenic system related to the synthesis of toxins. Experimental data of our bioassays suggest an analogous hypothesis, considering that symptoms could be induced after inoculating plant material with solely the filtrate from pathogenic strains. Moreover, positive PCR reactions using AM-toxin gene specific primers, designed for identification of apple infecting Alternaria pathovar, led to a hypothesis that a host specific toxin (toxins) were involved. It remains an intriguing challenge to discover or not if the agent of the “Italian disease” is the same of the one previously typified as Alternaria mali, casual agent of the apple blotch disease.