967 resultados para Molecular Weights
Resumo:
Three short-chain neurotoxins named NT-I, NT-II, and NT-III were purified from the venom of Naja kaouthia, a snake distributed throughout the south of Yunnan province, China, by a series of chromatographic steps, including an FPLC Resource S column. Their molecular weights, determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS, were 6952.19 Da, 6854.92 Da, and 6828.80 Da, respectively. NT-I consisted of 62 amino acid residues, and the other two consisted of 61 amino acid residues, including 8 cysteines. After hydrolysis by endoproteinase Glu-C, their primary sequences were determined. A test of their activities demonstrated that they effectively inhibited muscle contractions induced by electric stimulation. Furthermore, the extent of inhibition caused by NT-II and NT-III was less than that of NT-I. The IC(50)s were 0.04 mug/ml, 0.20 mug/ml, and 0.23 mug/ml for NT-I, NT-II, and NT-III, respectively. Compared with NT-II and NT-III, the higher activity of NT-I may be a result of the amino acid residue substitution Ile36 to Arg36.
Resumo:
The jetting of dilute polymer solutions in drop-on-demand printing is investigated. A quantitative model is presented which predicts three different regimes of behaviour depending upon the jet Weissenberg number Wi and extensibility of the polymer molecules. In regime I (Wi < ½) the polymer chains are relaxed and the fluid behaves in a Newtonian manner. In regime II (½ < Wi < L) where L is the extensibility of the polymer chain the fluid is viscoelastic, but the polymer do not reach their extensibility limit. In regime III (Wi > L) the chains remain fully extended in the thinning ligament. The maximum polymer concentration at which a jet of a certain speed can be formed scales with molecular weight to the power of (1-3ν), (1-6ν) and -2ν in the three regimes respectively, where ν is the solvent quality coefficient. Experimental data obtained with solutions of mono-disperse polystyrene in diethyl phthalate with molecular weights between 24 - 488 kDa, previous numerical simulations of this system, and previously published data for this and another linear polymer in a variety of “good” solvents, all show good agreement with the scaling predictions of the model.
Resumo:
Fluid assessment methods, requiring small volumes and avoiding the need for jetting, are particularly useful in the design of functional fluids for inkjet printing applications. With the increasing use of complex (rather than Newtonian) fluids for manufacturing, single frequency fluid characterisation cannot reliably predict good jetting behaviour, owing to the range of shearing and extensional flow rates involved. However, the scope of inkjet fluid assessments (beyond achievement of a nominal viscosity within the print head design specification) is usually focused on the final application rather than the jetting processes. The experimental demonstration of the clear insufficiency of such approaches shows that fluid jetting can readily discriminate between fluids assessed as having similar LVE characterisation (within a factor of 2) for typical commercial rheometer measurements at shearing rates reaching 104rads-1.Jetting behaviour of weakly elastic dilute linear polystyrene solutions, for molecular weights of 110-488. kDa, recorded using high speed video was compared with recent results from numerical modelling and capillary thinning studies of the same solutions.The jetting images show behaviour ranging from near-Newtonian to "beads-on-a-string". The inkjet printing behaviour does not correlate simply with the measured extensional relaxation times or Zimm times, but may be consistent with non-linear extensibility L and the production of fully extended polymer molecules in the thinning jet ligament.Fluid test methods allowing a more complete characterisation of NLVE parameters are needed to assess inkjet printing feasibility prior to directly jetting complex fluids. At the present time, directly jetting such fluids may prove to be the only alternative. © 2014 The Authors.
Resumo:
Hydrodynamic properties of five newly isolated algal extracellular polysaccharides with putative adhesive properties are described, using a combination of size exclusion chromatography, total or 'multi-angle' laser light scattering and analytical ultracentrifugation. The respective polysaccharides had been extracted from four filamentous cyanobacteria: Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green. algae Desmococcus olivaceus that had been separated from desert algal crusts of the Chinese Tegger Desert. SEC/MALLS experiments showed that the saccharides had, diverse-weight average molecular weights ranging from 4000 to 250,000 g/mol and all five showed either bi-modal or tri-modal molecular weight distribution profiles. Use of the Mark-Houwink-Kuhn-Sakurada (MHKS) scaling relationship between sedimentation coefficient and (weight average) molecular weight for the five samples, assuming a homologous conformation series revealed an MHKS b exponent of (0.33 +/- 0.04), suggesting a conformation between that of a stiff rod (b similar to 0.18) and a random coil (b similar to 0.4-0.5), i.e. a 'flexible rod' or 'stiff coil'. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Penaeid shrimp is the natural host of White Spot Syndrome Virus (WSSV) that can cause high mortality in the infected hosts. Attempts to obtain sufficient amounts of purified intact WSSV for characterization have been unsuccessful. Using crayfish, Cambarus clarkii as a proliferation system, a large amount of infectious WSSV was reproduced and intact WSSV viral particles were purified with a new isolation medium by ultra-centrifugation. Purified WSSV particles were very sensitive to organic solvents and the detergent, Triton X-100. The size of the rod-shape, somewhat elliptical, intact WSSV was 110-130 x 260-350 mm with a long, tail-like envelope extension. The naked viral nucleocapsid was about 80 x 350 nm, and it possessed 15 spiral and cylindrical helices composed of 14 globular capsomers along its long axis, and a 'ring' structure at one terminus. Distinct WSSV genome DNA patterns were obtained when the purified genomic dsDNA of WSSV was digested with five different restriction enzymes (HindIII, XhoI, B(BamHI, SalI, and SacI). In addition, at least 13 major and distinct protein bands could be observed when purified intact WSSV viruses were separated by SDS-PAGE followed by Coomassie Brilliant R-250 staining. The estimated molecular weights of these proteins were 190, 84, 75, 69, 68, 58, 52, 44, 28, 27.5, 23, 19, and 16 kD, respectively. Both the 44 and 190 kD proteins were easily removed if the hemolymph from the: WSSV infected crayfish was transiently treated with 1%, Triton X-100 before it was subjected to gradient centrifugation, indicating that both of them are located on the surface of the viral envelope. These characteristics are consistent with WSSV isolated from the penaeid shrimp. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Toxic cyanobacteria (blue-green algae) waterblooms have been found in several Chinese water bodies since studies began there in 1984. Waterbloom samples for this study contained Anabaena circinalis, Microcystis aeruginosa and Oscillatoria sp. Only those waterblooms dominated by Microcystis aeruginosa were toxic by the intraperitoneal (i.p.) mouse bioassay. Signs of poisoning were the same as with known hepatotoxic cyclic peptide microcystins. One toxic fraction was isolated from each Microcystis aeruginosa sample. Two hepatotoxic peptides were purified from each of the fractions by high-performance liquid chromatography and identified by amino acid analysis followed by low and high resolution fast-atom bombardment mass spectrometry (FAB-MS). LD50 i.p. mouse values for the two toxins were 245-mu-g/kg (Toxin A) and 53-mu-g/g (Toxin B). Toxin content in the cells was 0.03 to 3.95 mg/g (Toxin A) and 0.18 to 3.33 mg/kg (Toxin B). The amino acid composition of Toxin A was alanine [1], arginine [2], glutamic acid [1] and beta-methylaspartic acid [1]; for Toxin B it was the same, except one of the arginines was replaced with a leucine. Low- and high-resolution FAB-MS showed that the molecular weights were 1,037 m/z (Toxin A) and 994 m/z (Toxin B), with formulas of C49H76O12N13 (Toxin A) and C49H75O12N10 (Toxin B). It was concluded that Toxin A is microcystin-RR and Toxin B is microcystin-LR, both known cyclic heptapeptide hepatotoxins isolated from cyanobacteria in other parts of the world. Sodium borohydride reduction of microcystin-RR yielded dihydro-microcystin-RR (m/z = 1,039), an important intermediate in the preparation of tritium-labeled toxin for metabolism and fate studies.
Resumo:
A modelling study is performed to compare the plasma °ow and heat transfer char- acteristics of low-power arc-heated thrusters (arcjets) for three di®erent propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equa- tions, which take into account the e®ects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, veloc- ity and Mach number distributions calculated within the thruster nozzle obtained with di®erent propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the °ow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appear- ing near the cathode tip; the °ow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant °ows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, speci¯c enthalpies and thermal conductivities, are di®erent, there are appreciable di®er- ences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest speci¯c impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.
Resumo:
An on-line two-dimensional (2D) capillary electrophoresis (CE) system consisting of capillary isoelectric focusing (CIEF) and capillary gel electrophoresis (CGE) was introduced. To validate this 2D system, a dialysis interface was developed by mounting a hollow fiber on a methacrylate resin plate to hyphenate the two CE modes. The two dimensions of capillary shared a cathode fixated into a reservoir in the methacrylate plate; thus, with three electrodes and only one high-voltage source, a 2D CE framework was successfully established. A practical 2D CIEF-CGE experiment was carried out to deal with a target protein, hemoglobin (Hb). After the Hb variants with different isoelectric points (pIs) were focused in various bands in the first-dimension capillary, they were chemically mobilized one after another and fed to the second-dimension capillary for further separation in polyacrylamide gel. During this procedure, a single CIEF band was separated into several peaks due to different molecular weights. The resulting electrophoregrarn is quite different from that of either CIEF or CGE; therefore, more information about the studied Hb sample can be obtained.
Resumo:
Crude polysaccharide extracts were obtained from aqueous extracts of the microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. The crude extracts were fractionated by ion-exchange chromatography on DEAE-cellulose columns. The molecular weights of the polysaccharides in each fraction were estimated by gel filtration on Sephacryl columns. The crude polysaccharide extracts of both microalgae showed anti-inflammatory activity in the carrageenan-induced paw edema test. In assays of effects on the delayed hyper-sensitivity response, and on phagocytic activity assayed in vivo and in vitro, the C. stigmatophora extract showed immunosuppressant effects, while the P. tricornutum extract showed immunostimulatory effects. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
We have developed a novel strategy for the preparation of ion-bonded supramolecular star polymers by RAFT polymerization. An ion-bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert-butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by H-1 NMR and GPC. The results show that the polymerization possesses the character of living free-radical polymerization and the ion-bonded supramolecular star polymers PSt, PtBA, and PSt-b-PtBA, with six well-defined arms, were successfully synthesized.
Sulfonated poly(arylene-co-imide)s as water stable proton exchange membrane materials for fuel cells
Resumo:
A novel sulfonated poly(arylene-co-imide)s were synthesized by Ni(0) catalytic copolymerization of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and naphthalimide dichloride monomer. The synthesized copolymers with the - SO3H group on the side-chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. Because of the introduction of electron donating phenoxy groups into naphthalimide moieties, the hydrolysis of the imide rings was depressed. The resulting copolymers exhibited excellent water stability. The copolymer membranes display no apparently change in appearance, flexibility, and toughness after a soaking treatment in pressurized water at 140 degrees C for 250 h.
Resumo:
DNA/poly-L-lysine (PLL) capsules were constructed through a layer-by-layer (LbL) self-assembly of DNA and PLL on CaCO3 microparticles, and then used as dual carriers for DNA and drug after dissolution of carbonate cores. The permeability of DNA/PLL microcapsules was investigated with fluorescence probes with different molecular weights by confocal microscopy. The result revealed that the fluorescence probes were able to penetrate the capsule walls even its molecular weight up to 150 kDa. The resultant capsules were used to load drug model molecules-fluorescein isothiocyanate (FITC)-dextran (4 kDa) via spontaneous deposition mechanism.
Resumo:
Five novel vanadium(III) complexes [PhN = C(R-2)CHC(R-1)O]VCl2(THF)(2) (4a: R-1 = Ph, R-2 = CF3; 4b: R-1 =t-Bu, R-2 = CF3; 4c: R-1 = CF3, R-2 = CH3; 4d: R-1 = Ph, R-2 = CH3; 4e: R-1 = Ph, R-2 = H) have been synthesized and characterized. On activation with Et2AlCl, all the complexes, in the presence of ethyl trichloroacetate (ETA) as a promoter, are highly active precatalysts for ethylene polymerization, and produce high molecular weight and linear polymers. Catalyst activities more than 16.8 kg PE/mmolv h bar and weight-average molecular weights higher than 173 kg/ mol were observed under mild conditions.
Resumo:
The present work describes a liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method for rapid identification of phenylethanoid glycosides in plant extract from Plantago asiatica L. By using a binary mobile phase system consisting of 0.2% acetic acid and acetonitrile under gradient conditions, a good separation was achieved on a reversed-phase C-18 column. The [M-H](-) ions, the molecular weights, and the fragment ions of phenylethanoid glycosides were obtained in the negative ion mode using LC-ESI-MS. The identification of the phenylethanoid glycosides (peaks 1-3) in the extract of P. asiatica L. was based on matching their retention time, the detection of molecular ions, and the fragment ions obtained by collision-induced dissociation (CID) experiments with those of the authentic standards and data reported in the literature.
Resumo:
A series of aluminum ethyls and isopropoxides based on a bis(pyrrolidene) Schiff base ligand framework has been prepared and characterized. NMR studies of the dissolved complexes indicate that they adopt a symmetric structure with a monomeric, five-coordinated aluminum center core. The aluminum ethyls used as catalysts in the presence of 2-propanol as initiator and the aluminum isopropoxides were applied for lactide polymerization in toluene to test their activities and stereoselectivities. All polymerizations are living, as evidenced by the narrow polydispersities and the good fit between calculated and found number-average molecular weights of the isolated polymers. All of these aluminum complexes polymerized (S,S)-lactide to highly isotactic PLA without epimerization of the monomer, furnished isotactic-biased polymer from rac-lactide, and gave atactic polymer from meso-lactide.