889 resultados para Molecular Dynamics Method
Resumo:
Peanut agglutinin is a homotetrameric nonglycosylated protein. The protein has a unique open quaternary structure. Molecular dynamics simulations have been employed follow the atomistic details of its unfolding at different temperatures. The early events of the deoligomerization of the protein have been elucidated in the present study. Simulation trajectories of the monomer as well as those of the tetramer have been compared and the tetramer is found to be substantially more stable than its monomeric counterpart. The tetramer shows retention of most of its.. secondary structure but considerable loss of the tertiary structure at high temperature. e generation of a This observation impies the molten globule-like intermediate in the later stages of deoligomerization. The quaternary structure of the protein has weakened to a large extent, but none of the subunits are separated. In addition, the importance of the metal-binding to the stability of the protein structure has also been investigated. Binding of the metal ions not only enhances the local stability of the metal-ion binding loop, but also imparts a global stability to the overall structure. The dynamics of different interfaces vary significantly as probed through interface clusters. The differences are substantially enhanced at higher temperatures. The dynamics and the stability of the interfaces have been captured mainly by cluster analysis, which has provided detailed information on the thermal deoligomerization of the protein.
Resumo:
The thermally driven Structural phase transition in the organic-inorganic hybrid perovskite (CnH2n+1NH3)(2)PbI4 has been investigated using molecular dynamics (MD) simulations. This system consists of positively charged alkyl-amine chains anchored to a rigid negatively charged PbI4 sheet with the chains organized as bilayers with a herringbone arrangement. Atomistic simulations were performed using ail isothermal-isobaric ensemble over a wide temperature range from 65 to 665 K for different alkyl chain lengths, n = 12, 14, 16, and 18. The simulations are able to reproduce the essential Features of the experimental observations of this system, including the existence of a transition, the linear variation of the transition temperature with alkyl chain length, and the expansion of the bilayer thickness at the transition. By use of the distance fluctuation Criteria, it is Shown that the transition is associated With a Melting of the alkyl chains of the anchored bilayer. Ail analysis of the conformation of the alkyl chains shows increased disorder in the form of gauche defects above due melting transition. Simulations also show that the melting transition is characterized by the complete disappearance of all-trans alkyl chains in the anchored bilayer, in agreement with experimental observations. A conformationally disordered chain has a larger effective cross-sectional area, and above due transition a uniformly tilted arrangement of the anchored chains call no longer be Sustained. At the melt the angular distribution of the orientation of the chains are 110 longer uniform; the chains are splayed allowing for increased space for individual chains of the anchored bilayer. This is reflected in a sharp rise in the ratio of the mean head-to-head to tail-to-tail distance of the chains of the bilayer at the transition resulting in in expansion of the bilayer thickness. The present MD simulations provide a simple explanation as to how changes in conformation of individual alkyl-chains gives rise to the observed increase in the interlayer lattice spacing of (CnH2n+1NH3)(2)PbI4 at the melting transition.
Resumo:
Phospholipase A(2) hydrolyzes phospholipids at the sn-2 position to cleave the fatty-acid ester bond of L-glycerophospholipids. The catalytic dyad (Asp99 and His48) along with a nucleophilic water molecule is responsible for enzyme hydrolysis. Furthermore, the residue Asp49 in the calcium-binding loop is essential for controlling the binding of the calcium ion and the catalytic action of phospholipase A2. To elucidate the structural role of His48 and Asp49, the crystal structures of three active-site single mutants H48N, D49N and D49K have been determined at 1.9 angstrom resolution. Although the catalytically important calcium ion is present in the H48N mutant, the crystal structure shows that proton transfer is not possible from the catalytic water to the mutated residue. In the case of the Asp49 mutants, no calcium ion was found in the active site. However, the tertiary structures of the three active-site mutants are similar to that of the trigonal recombinant enzyme. Molecular-dynamics simulation studies provide a good explanation for the crystallographic results.
Resumo:
The self-diffusion properties of pure CH4 and its binary mixture with CO2 within MY zeolite have been investigated by combining an experimental quasi-elastic neutron scattering (QENS) technique and classical Molecular dynamics simulations. The QENS measurements carried out at 200 K led to an unexpected self-diffusivity profile for Pure CH4 with the presence of a maximum for a loading of 32 CH4/unit cell, which was never observed before for the diffusion of apolar species in azeolite system With large windows. Molecular dynamics simulations were performed using two distinct microscopic models for representing the CH4/NaY interactions. Depending on the model, we are able to fairly reproduce either the magnitude or the profile of the self-diffusivity.Further analysis allowed LIS to provide some molecular insight into the diffusion mechanism in play. The QENS measurements report only a slight decrease of the self-diffusivity of CH4 in the presence of CO2 when the CO2 loading increases. Molecular dynamics simulations successfully capture this experimental trend and suggest a plausible microscopic diffusion mechanism in the case of this binary mixture.
Resumo:
We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime.Activation energy is in the order E-a(n-pentane)>E-a(isopentane)>E-a(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen thatD(n pentane)>D(isopentane)>D(neopentane) and E-a(n-pentane)< E-a(isopentane)< E-a(neopentane). Intermediate scattering function for small wavenumbers obtained from MD follows a single exponential decay for neopentane and isopentane. For n-pentane, a single exponential fit provides a poor fit especially at short times. Cage residence time is largest for n-pentane and lowest for neopentane. For neopentane, the width of the self-part of the dynamic structure factor shows a near monotonic decrease with wavenumber. For n-pentane a minimum is seen near k=0.5 A degrees(-1) suggesting a slowing down of motion around the 12-ring window, the bottleneck for diffusion. Finally, the result that the branched isomer has a higher diffusivity as compared with the linear analog is at variation from what is normally seen.
Resumo:
ingle tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. There quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Angstrom from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Nai counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. in the absence of any coordinated ion. due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.
Resumo:
The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The details of cage-to-cage migration have been obtained from an analysis of the molecular dynamics trajectory of a probe adsorbate. It is observed that particles utilize the region within a radius of 2 angstrom from the window center but with diffusion taking place predominantly at 1.6 angstrom from the window center and a potential energy of nearly -12 kJ/mol. A barrier of about 0.5 kJ/mol is observed for surface-mediated diffusion. Surprisingly, for diffusion without surface mediation for a particle going from one cage center to another, there is an attractive well near the window instead of a barrier. At low adsorbate concentrations and room temperature, the predominant mode for cage-to-cage migration is surface-mediated diffusion. The analysis suggests that particles slide along the surface of the inner walls of the alpha-cages during migration from one cage to another.
Resumo:
The crystal structures of two forms of Mycobacterium leprae single-stranded DNA-binding protein (SSB) have been determined at 2.05 and 2.8 A resolution. Comparison of these structures with the structures of other eubacterial SSBs indicates considerable variation in their quaternary association, although the DNA-binding domains in all of them exhibit the same OB-fold. This variation has no linear correlation with sequence variation, but could be related to variation in protein stability. Molecular-dynamics simulations have been carried out on tetrameric molecules derived from the two forms and the prototype Escherichia coli SSB and the individual subunits of both proteins. Together, the X-ray studies and molecular-dynamics simulations yield information on the relatively rigid and flexible regions of the molecule and on the effect of oligomerization on flexibility. The simulations provide insight into the changes in subunit structure on oligomerization. They also provide insight into the stability and time evolution of the hydrogen bonds/water bridges that connect the two pairs of monomers in the tetramer.
Resumo:
Valinomycin is an important ionophore which exhibits a high conformational flexibility. The study of various conformations adopted by this molecule together with the study of flexibility in a given conformation can throw light on the ion transport by the ionophore across the membrane. Molecular dynamics (MD) studies are ideal to characterize the flexibility in different parts of the molecule and can also give an idea of various conformations adopted by the molecule at a given temperature. Hence MD studies at 100K have been carried out on the minimized crystal structure of the molecule to scan the possible conformations in the neighbourhood of the well known 'bracelet' like structure of uncomplexed Valinomycin, Properties, like the flexibility, average values, r.m.s. fluctuations of the various intramolecular hydrogen bonds are discussed. Energy minimization has been carried out on selected MD simulated points to analyze the characteristics of the unique conformation adopted by this molecule at this temperature.
Resumo:
Molecular dynamics calculations on methane sorbed in NaY (Si/Al = 3.0) employing realistic methane-methane and methane-zeolite intermolecular potential functions at different temperatures (50, 150, 220, and 300 K) and concentrations (2, 4, 6, and 8 molecules/cage) are reported. The thermodynamic results are in agreement with the available experimental data. Guest-guest and guest-host radial distribution functions (rdfs), energy distribution functions, distribution of cage occupancy, center-of-cage-center-of-mass (coc-com) rdfs, velocity autocorrelation functions for com and angular motion and the Fourier transformed power spectra, and diffusion coefficients are presented as a function of temperature and concentration. At 50 K, methane is localized near the adsorption site. Site-site migration and essentially free rotational motion are observed at 150 K. Molecules preferentially occupy the region near the inner surface of the alpha-cage. The vibrational frequencies for the com of methane shift toward higher values with decreasing temperature and increasing adsorbate concentration. The observed frequencies for com motion are 36, 53, and 85 cm-1 and for rotational motion at 50 K, 95 and 150 cm-1 in agreement with neutron scattering data. The diffusion coefficients show a type I behavior as a function of loading in agreement with NMR measurements. Cage-to-cage diffusion is found to be always mediated by the surface.
Resumo:
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G(7)) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of similar to1.5 Angstrom from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400 K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.
Resumo:
Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures
Resumo:
The structures of a PbO.SiO2 glass and melt have been studied using molecular dynamics simulation employing Born-Mayer-Huggins pair potentials. Various pair distribution functions are presented and discussed. Pb-Pb correlations persist in the melt, in agreement with experimental observations. The calculated and experimental radial distribution functions are compared.