1000 resultados para Modelagem climática
Resumo:
Biological nitrogen fixation, catalyzed by nitrogenases, contributes about half of the nitrogen needed to global agriculture. For forty years synthetic chemists and theoreticians have tried to understand and model the structure and function of this important metalloenzyme. Ten years after the first report on the crystal structure of the MoFe protein, scientists still have not been able to synthesize a chemical equivalent of the FeMo cofactor nor the structure knowledge revealed the key to its catalytic activity. This paper with 104 references presents a review of the most relevant advances in chemical nitrogen fixation and their relation with the nitrogenases.
Resumo:
Quinine and quinidine are well-known 4-quinolinecarbinolamines that exhibit antimalarial activity, but, in contrast, their epimers 9-epiquinine and 9-epiquinidine are almost inactive. Literature data are conflicting in describing the 4-quinolinecarbinolamine interaction mode with the molecular target, the ferriprotoporphyrin IX [Fe(III)PPIX]. In the present paper, a pharmacophore is proposed based on the binding of the non-aromatic nitrogen to the iron atom. The 4-quinolinecarbinolamine antimalarials were superimposed on the pharmacophore under consideration and complexes with Fe(III)PPIX were constructed. Conformational analyses of the complexes were performed applying the MM+ molecular mechanics method. The analysis of the complexes showed that the proposed ligand mode is possible although it does not explain the activity differences between epimers. A discussion of the structural aspects is also provided.
Resumo:
The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Hence soils are a major reservoir of carbon in terrestrial ecosystems and an important sink. Recently, emphasis has been placed on the need to sequester carbon from atmospheric carbon dioxide into soil organic matter because of international concerns about greenhouse gas emissions and global climate change. The best strategies to built-up carbon stocks in the soil are basically those that increase the input of organic matter to the soil, and/or decrease the rate of soil organic matter decomposition. Grain crop systems based on soil ploughing and harrowing lead to CO2 emissions combined with tremendous soil losses. In Brazil, no-tillage system was introduced to combat soil erosion by water and this soil management led to the build-up of soil carbon stocks with simultaneous high crop yields. However, the present procedure used to quantify carbon stocks in soils is laborious and of high cost. The use of infrared spectroscopy is very promising as an alternative low-cost method of soil carbon determination.
Resumo:
The purpose of the present study is to evaluate the atmospheric behavior in the dispersion of the pollutants SO2, PM10 and NOx emitted by the President Medici power plant in Candiota, RS. The RAMS atmospheric model was applied and the simulations were conducted from april in 20 to 24, 2004. The concentrations of the pollutants simulated by RAMS were compared with the data measured at the air quality monitoring stations. The results showed significant influence of the emissions generated by the power plant on the concentration of the pollutants.
Resumo:
Trypanosoma cruzi is a protozoan parasite that causes a severe disease (Chagas'disease) in Central and South America. The currently available chemotherapeutic agents against this disease are still inadequate. The enzyme trypanothione reductase (TR) is considered a validated molecular target for the development of new drugs against this parasite. In this regard, a series of arylfurans based on 2,5-bis-(4-acetamidophenyl)furan was synthesized and tested for their in vitro inhibitory activity against TR. Molecular modeling studies of putative enzyme-inhibitor complexes revealed a possible mechanism of interaction. From synthesized compounds, a benzylaminofuran derivative was found to be more active than the lead compound.
Resumo:
We present a theoretical study of solvent effect on C2H5N···HF hydrogen-bonded complex through the application of the AGOA methodology. By using the TIP4P model to orientate the configuration of water molecules, the hydration clusters generated by AGOA were obtained through the analysis of the molecular electrostatic potential (MEP) of solute (C2H5N···HF). Thereby, it was calculated the hydration energies on positive and negative MEP fields, which are maxima (PEMmax) and minima (PEMmin) when represent the -CH2- methylene groups and hydrofluoric acid, respectively. By taking into account the higher and lower hydration energy values of -370.6 kJ mol-1 and -74.3 kJ mol-1 for PEMmax and PEMmin of the C2H5N···HF, our analysis shows that these results corroborate the open ring reaction of aziridine, in which the preferential attack of water molecules occurs at the methylene groups of this heterocyclic.
Resumo:
In this work, the combustion process of ammonium dinitramide, ADN, has been modeled in two different situations: decomposition in open environment, with abundant air and decomposition in a rocket motor internal environmental conditions. The profiles of the two processes were achieved, based on molar fractions of the species that compose the products of ADN combustion. The velocity of formation and quantity of species in the open environment was bigger than the ones in the rocket motor environment, showing the effect of the different atmosphere in the reactions kinetics.
Resumo:
Water loss and sugar gain were modelling during the osmotic dehydration process of pieces of pineaplle. The transfer of solute to the fruit and the water to the solution was based on Fick's 2nd law. The three dimensional model was solved by the finite element method with the usage of the software COMSOL Multiphysics 3.2. The main and cross diffusion coefficients and the Biot number were determined on the simulation and the deviation between the experimental and the simulated data were 4,28% to sucrose and 1,66 to the water.
Resumo:
The thermochromic behavior exhibited by vanadium(IV) alkoxides, [V2(μ-OPr i)2(OPr i) 6] and [V2(μ-ONep)2(ONep)6 ], OPr i = isopropoxide and ONep = neopentoxide, was studied by molecular modeling using DFT, TDDFT and INDO/S methods. The vibrational and electronic spectra calculated for [V2(μ-OPr i)2(OPr i) 6] were very similar to the experimental data registered for crystalline samples of the complex and for its solutions at low temperature (< 210 K), while spectra recorded at high temperature (> 315 K) were compatible with those calculated for the monomeric form, [V(OPr i)4]. These results consistently point to a monomer/dimer equilibrium as an explanation for the solution thermochromism of {V(OPr i)4}n. In spite of the structural similarity between [V2(μ-ONep)2(ONep)6 ] and [V2(μ-OPr i)2(OPr i) 6] in the solid state, the thermochromic behavior of the former could not be explained by the same model, and the possibility of tetranuclear aggregation at low temperatures was also investigated.
Resumo:
Molecular modeling enables the students to visualize the abstract relationships underlying theoretical concepts that explain experimental data on the molecular and atomic levels. With this aim we used the free software "Arguslab 4.0.1" (semi-empirical method) to study the reaction of 1-chloropropane with ethoxide in solution, known to lead to methyl propyl ether, through the S N2 mechanism, and propene, through the E2 mechanism. This tool allows users to calculate some properties (i. e. heat formation or electric charges) and to produce 3D images (molecular geometry, electrostatic potential surface, etc.) that render the comprehension of the factors underlying the reaction's progress, which are related to the structure of the reagents, and the process kinetic clearer and easier to understand by the students
Resumo:
Mathematical models can help to prevent high levels of toxic substances in soil or fruits of plants treated with pesticides and indicate that such substances should be systematically monitored. The aim of this research was to study the kinetics of paclobutrazol biodegradation by soil native bacteria using mathematical models. Three models were used to assess the kinetics of paclobutrazol biodegradation obtained experimentally. Excellent fits were obtained using dual kinetic and logistic models. The use of glycerol as additional carbon source increased the biodegradation of PBZ and consequently decreased the time required for a given PBZ initial concentration be halved.
Modelagem termodinâmica por extração por solvente de metais divalentes em meio sulfato usando D2EHPA
Resumo:
The extraction of divalent metals (Mn2+, Ni2+, Co2+ and Cu2+) in the system MSO4 - H2SO4 - H2O - D2EHPA in isoparaffin (17/21) was studied by a thermodynamic model based on chemical equilibria with mass and charge balance equations. The activity coefficients of all solutes in the aqueous phase were calculated by Davies equation. By applying this model, the equilibrium concentrations of solutes were calculated from de concentration of divalent metals and pH. The predicted distribution coefficients for the divalents metals were in good agreement with experimental results.
Resumo:
The objective of this work is to demonstrate the efficient utilization of the Principal Components Analysis (PCA) as a method to pre-process the original multivariate data, that is rewrite in a new matrix with principal components sorted by it's accumulated variance. The Artificial Neural Network (ANN) with backpropagation algorithm is trained, using this pre-processed data set derived from the PCA method, representing 90.02% of accumulated variance of the original data, as input. The training goal is modeling Dissolved Oxygen using information of other physical and chemical parameters. The water samples used in the experiments are gathered from the Paraíba do Sul River in São Paulo State, Brazil. The smallest Mean Square Errors (MSE) is used to compare the results of the different architectures and choose the best. The utilization of this method allowed the reduction of more than 20% of the input data, which contributed directly for the shorting time and computational effort in the ANN training.
Resumo:
RESUMO A cultura do eucalipto no estado do Paraná, Brasil, fornece matéria-prima para a produção de celulose, carvão, madeira tratada e madeira serrada. Dentre as principais doenças fúngicas, destaca-se a ferrugem causada por Puccinia psidii. Diversas formas de controle desta doença podem ser apontadas, destacando-se o plantio de clones resistentes em locais com condições climáticas menos favoráveis à ocorrência da doença. A escolha de locais com baixos riscos climáticos pode ser feita por meio do zoneamento. Assim, o objetivo deste estudo foi desenvolver um zoneamento da favorabilidade climática para a ferrugem do Eucalyptus, no estado do Paraná, com base na temperatura e no período de molhamento foliar para a germinação de urediniósporos e infecção por P. psidii. Estas informações foram utilizadas em modelos para a geração dos mapas mensais de distribuição da doença, conforme a favorabilidade à ocorrência da doença: ‘altamente favorável’, ‘favorável’, ‘pouco favorável’ e ‘desfavorável’. Os mapas gerados foram validados pelo confronto com os pontos de ocorrência natural da ferrugem no estado do Paraná. Concluiu-se que as estações do ano mais favoráveis à ocorrência da doença foram a primavera e o verão e a menos favorável foi o inverno. A região central do estado, na zona de transição entre o clima tropical do Norte e o temperado do Sul, é mais favorável à ocorrência da ferrugem e que, a região Sul e a Norte, são menos favoráveis por razões diferentes, em decorrência das baixas temperaturas e menor umidade, respectivamente.
Resumo:
Este trabalho constitui a ultima parte do estudo que objetivou calcular o consumo de água em plantios de eucalipto. Nesta parte, modelou-se a resistência estomática em função das variáveis ambientais irradiância solar global, déficit de pressão de vapor e temperatura. Com a resistência estomática modelada a partir dos valores observados no artigo anterior, foi possível calcular a transpiração do eucalipto pelo método Penman-Monteith em alguns dias, nos períodos úmido e seco do ano. Verificou-se a existência da correlação entre a resistência estomática e as variáveis ambientais. Os modelos gerados nessa relação mostraram-se eficientes para calcular as variações diárias resistência estomática e também totais horários e diários de transpiração.