760 resultados para Mode-locked lasers
Resumo:
We numerically show the possibility of pulse shaping in a mode-locked fiber laser by inclusion of an amplitude-phase spectral filter into the laser cavity. Various advanced temporal waveforms are generated, including parabolic, flat-top and triangular pulses. © 2014 OSA.
Resumo:
We proposed and demonstrated pulsed fiber lasers Q-switched and mode-locked by using a large-angle tilted fiber grating, for the first time to our best knowledge. Owing to the unique polarization properties of the large-angle tilted fiber grating (LA-TFG), i.e. polarization-dependent loss and polarization-mode splitting, switchable dual-wavelength Q-switched and mode-locked pulses have been achieved with short and long cavities, respectively. For the mode-locking case, the laser was under the operation of nanosecond rectangular pulses, due to the peak-power clamping effect. With the increasing pump power, the durations of both single-and dual-wavelength rectangular pulses increase. It was also found that each filtered wavelength of the dual-wavelength rectangular pulse corresponds to an individual nanosecond rectangular pulse by employing a tunable bandpass filter.
Resumo:
We review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fibre lasers. These include parabolic self-similar pulse mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fibre laser by inclusion of a spectral filter into the laser cavity.
Resumo:
Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems.
Resumo:
We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas.
Resumo:
We demonstrate a great variability of single-pulse (with only one pulse/wave-packet traveling along the cavity) generation regimes in fiber lasers passively mode-locked by non-linear polarization evolution (NPE) effect. Combining extensive numerical modeling and experimental studies, we identify multiple very distinct lasing regimes with a rich variety of dynamic behavior and a remarkably broad spread of key parameters (by an order of magnitude and more) of the generated pulses. Such a broad range of variability of possible lasing regimes necessitates developing techniques for control/adjustment of such key pulse parameters as duration, radiation spectrum, and the shape of the auto-correlation function. From a practical view point, availability of pulses/wave-packets with such different characteristics from the same laser makes it imperative to develop variability-aware designs with control techniques and methods to select appropriate application-oriented regimes. © 2014 The Authors.
Resumo:
We study the effect of noise on the dynamics of passively mode-locked semiconductor lasers both experimentally and theoretically. A method combining analytical and numerical approaches for estimation of pulse timing jitter is proposed. We investigate how the presence of dynamical features such as wavelength bistability in a quantum-dot laser affects timing jitter.
Resumo:
We report experimental study of vector solitons for the fundamental and harmonic mode-locked operation in erbiumdoper fiber lasers with carbon nanotubes based saturable absorbers and anomalous dispersion cavities. We measure evolution of the output pulses polarization and demonstrate vector solitons with various polarization attractors, including locked polarization, periodic polarization switching, and polarization precession.
Resumo:
We overview our recent results on polarisation dynamics of vector solitons in erbium doped fibre laser mode locked with carbon nanotubes. Our experimental and theoretical study revealed new families of vector solitons for fundamental and bound-state soliton operations. The observed scenario of the evolution of the states of polarisation (SOPs) on the Poincare sphere includes fast polarisation switching between two and three SOPs along with slow SOP evolution on a double scroll chaotic attractor. The underlying physics presents an interplay between effects of birefringence of the laser cavity and light induced anisotropy caused by polarisation hole burning. © 2014 IEEE.
Resumo:
We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment. © 2012 Optical Society of America.
Resumo:
Mode-locked fiber lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes. The complex interplay among the effects of gain/loss, dispersion and nonlinearity in a fiber cavity can be used to shape the pulses and manipulate and control the light dynamics and, hence, lead to different mode-locking regimes. Major steps forward in pulse energy and peak power performance of passively mode-locked fiber lasers have been made with the recent discovery of new nonlinear regimes of pulse generation, namely, dissipative solitons in all-normal-dispersion cavities and parabolic self-similar pulses (similaritons) in passive and active fibers. Despite substantial research in this field, qualitatively new phenomena are still being discovered. In this talk, we review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fiber lasers. These include similariton mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fiber laser by inclusion of a spectral filter into the laser cavity.
Resumo:
We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.
Resumo:
For a fibre Raman amplifier with randomly varying birefringence, we provide insight on the validity of previously explored multi-scale techniques leading to polarisation pulling of the signal state of polarisation to the pump state of polarisation. Unlike previous study, we demonstrate that in addition to polarisation pulling a new random birefringence-mediated phenomenon that goes beyond existing multi-scale techniques can boost resonance-like gain fluctuations similar to the Stochastic Anti-Resonance. For mode locked fibre lasers we report on fast and slow polarisation dynamics of fundamental, bound state, and multipulsing vector solitons along with stretched pulses. We demonstrate that tuning cavity anisotropy and birefringence along with parameters of an injected signal with randomly varying state of polarisation provides access to the variety of vector waveforms previously unexplored.
Resumo:
At the level of fundamental research, fibre lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes, while at the applied research level, pulses with different and optimised features – e.g., in terms of pulse duration, temporal and/or spectral intensity profile, energy, repetition rate and emission bandwidth – are sought with the general constraint of developing efficient cavity architectures. In this talk, we review our recent progress on the realisation of different regimes of pulse generation in passively mode-locked fibre lasers through control of the in-cavity propagation dynamics. We report on the possibility to achieve both parabolic self-similar and triangular pulse shaping in a mode-locked fibre laser via adjustment of the net normal dispersion and integrated gain of the cavity [1]. We also show that careful control of the gain/loss parameters of a net-normal dispersion laser cavity provides the means of achieving switching among Gaussian pulse, dissipative soliton and similariton pulse solutions in the cavity [2,3]. Furthermore, we report on our recent theoretical and experimental studies of pulse shaping by inclusion of an amplitude and phase spectral filter into the cavity of a laser. We numerically demonstrate that a mode-locked fibre laser can operate in dif- ferent pulse-generation regimes, including parabolic, flattop and triangular waveform generations, depending on the amplitude profile of the in-cavity spectral filter [4]. An application of technique using a flat-top spectral filter is demonstrated to achieve the direct generation of sinc-shaped optical Nyquist pulses of high quality and of a widely tuneable bandwidth from the laser [5]. We also report on a recently-developed versa- tile erbium-doped fibre laser, in which conventional soliton, dispersion-managed soli- ton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by programming different group-velocity dispersion profiles and bandwidths on an in-cavity programmable filter [6]. References: 1. S. Boscolo and S. K. Turitsyn, Phys. Rev. A 85, 043811 (2012). 2. J. Peng et al., Phys. Rev. A 86, 033808 (2012). 3. J. Peng, Opt. Express 24, 3046-3054 (2016). 4. S. Boscolo, C. Finot, H. Karakuzu, and P. Petropoulos, Opt. Lett. 39, 438-441 (2014). 5. S. Boscolo, C. Finot, and S. K. Turitsyn, IEEE Photon. J. 7, 7802008 (2015). 6. J. Peng and S. Boscolo, Sci. Rep. 6, 25995 (2016).