970 resultados para Mode propagation
Resumo:
A side-fed bifilar helix antenna can be integrated with a quadrifilar helix antenna in a piggy back configuration in order to achieve a dual-mode radiating structure. The overall length of the structure is 0.44 lambda at the resonant frequency (1.54 GHz) of the space mode antenna and 0.39 lambda at the resonant frequency (1.34 GHz) of the terrestrial mode antenna. The computed results are validated by experimental data.
Resumo:
Time- and space-resolved magnetic (B-dot) probe measurements in combination with measurements of the plasma parameters were carried out to investigate the relationship between the formation and propagation of helicon modes and the radio frequency (rf) power deposition in the core of a helicon plasma. The Poynting flux and the absorbed power density are deduced from the measured rf magnetic field distribution in amplitude and phase. Special attention is devoted to the helicon absorption under linear and nonlinear conditions. The present investigations are attached to recent observations in which the nonlinear nature of the helicon wave absorption has been demonstrated by showing that the strong absorption of helicon waves is correlated with parametric excitation of electrostatic fluctuations.
Resumo:
The propagation of a Gaussian electromagnetic beam along the direction of magnetic field in a plasma is investigated. The extraordinary (E-x+iE(y)) mode is explicitly considered in the analysis, although the results for the ordinary mode can be obtained upon replacing the electron cyclotron frequency omega(c) by -omega(c). The propagating beam electric field is coupled to the surrounding plasma via the dielectric tensor, taking into account the existence of a stationary magnetic field. Both collisionless and collisional cases are considered, separately. Adopting an established methodological framework for beam propagation in unmagnetized plasmas, we extend to magnetized plasmas by considering the beam profile for points below the critical curve in the beam-power versus beam-width plane, and by employing a relationship among electron concentration and electron temperature, provided by kinetic theory (rather than phenomenology). It is shown that, for points lying above the critical curve in the beam-power versus beam-width plane, the beam experiences oscillatory convergence (self-focusing), while for points between the critical curve and divider curve, the beam undergoes oscillatory divergence and for points on and below the divider curve the beam suffers a steady divergence. For typical values of parameters, numerical results are presented and discussed. (C) 2008 American Institute of Physics.
Resumo:
The nonlinear propagation of amplitude-modulated electrostatic wavepackets in an electron-positron-ion (e-p-i) plasma is considered, by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasi-thermal acoustic-like lower mode and a Langmuir-like optic-type upper one. These results equally apply in warm pair ion ( e. g. fullerene) plasmas contaminated by a small fraction of stationary ions ( or dust), in agreement with experimental observations and theoretical predictions in pair plasmas. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scales perturbation technique, the basic set of model equations is reduced to a nonlinear Schrodinger (NLS) equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower ( acoustic) mode is mostly stable for large wavelengths, and may propagate in the form of a dark-type envelope soliton ( a void) modulating a carrier wavepacket, while the upper linear mode is intrinsically unstable, and thus favours the formation of bright-type envelope soliton ( pulse) modulated wavepackets. The stability ( instability) range for the acoustic ( Langmuir-like optic) mode shifts to larger wavenumbers as the positive-to-negative ion temperature ( density) ratio increases. These results may be of relevance in astrophysical contexts, where e-p-i plasmas are encountered, and may also serve as prediction of the behaviour of doped ( or dust-contaminated) fullerene plasmas, in the laboratory.
Resumo:
Evaluating the ratio of selected helium lines allows for measurement of electron densities and temperatures. This technique is applied for L-mode plasmas at TEXTOR (O. Schmitz et al., Plasma Phys. Control. Fusion 50 (2008) 115004). We report our first efforts to extend it to H-mode plasma diagnostics in DIII-D. This technique depends on the accuracy of the atomic data used in the collisional radiative model (CRM). We present predictions for the electron temperatures and densities by using recently calculated R-Matrix With Pseudostates (RMPS) and Convergent Close-Coupling (CCC) electron-impact excitation and ionization data. We include contributions from higher Rydberg states by means of the projection matrix. These effects become significant for high electron density conditions, which are typical in H-mode. We apply a non-equilibrium model for the time propagation of the ionization balance to predict line emission profiles from experimental H-mode data from DIII-D. © 2010 Elsevier B.V. All rights reserved.
Resumo:
The discovery of the soliton is considered to be one of the most significant events of the twentieth century. The term soliton refers to special kinds of waves that can propagate undistorted over long distances and remain unaffected even after collision with each other. Solitons have been studied extensively in many fields of physics. In the context of optical fibers, solitons are not only of fundamental interest but also have potential applications in the field of optical fiber communications. This thesis is devoted to the theoretical study of soliton pulse propagation through single mode optical fibers.
Resumo:
Studies on pulse propagation in single mode optical fibers have attracted interest from a wide area of science and technology as they have laid down the foundation for an in-depth understanding of the underlying physical principles, especially in the field of optical telecommunications. The foremost among them is discovery of the optical soliton which is considered to be one of the most significant events of the twentieth century owing to its fantastic ability to propagate undistorted over long distances and to remain unaflected after collision with each other. To exploit the important propertia of optical solitons, innovative mathematical models which take into account proper physical properties of the single mode optical fibers demand special attention. This thesis contains a theoretical analysis of the studies on soliton pulse propagation in single mode optical fibers.
Variable mixed-mode delamination in composite laminates under fatigue conditions: testing & analysis
Resumo:
La majoria de les fallades en elements estructurals són degudes a càrrega per fatiga. En conseqüència, la fatiga mecànica és un factor clau per al disseny d'elements mecànics. En el cas de materials compòsits laminats, el procés de fallada per fatiga inclou diferents mecanismes de dany que resulten en la degradació del material. Un dels mecanismes de dany més importants és la delaminació entre capes del laminat. En el cas de components aeronàutics, les plaques de composit estan exposades a impactes i les delaminacions apareixen facilment en un laminat després d'un impacte. Molts components fets de compòsit tenen formes corbes, superposició de capes i capes amb diferents orientacions que fan que la delaminació es propagui en un mode mixt que depen de la grandària de la delaminació. És a dir, les delaminacions generalment es propaguen en mode mixt variable. És per això que és important desenvolupar nous mètodes per caracteritzar el creixement subcrític en mode mixt per fatiga de les delaminacions. El principal objectiu d'aquest treball és la caracterització del creixement en mode mixt variable de les delaminacions en compòsits laminats per efecte de càrregues a fatiga. Amb aquest fi, es proposa un nou model per al creixement per fatiga de la delaminació en mode mixt. Contràriament als models ja existents, el model que es proposa es formula d'acord a la variació no-monotònica dels paràmetres de propagació amb el mode mixt observada en diferents resultats experimentals. A més, es du a terme un anàlisi de l'assaig mixed-mode end load split (MMELS), la característica més important del qual és la variació del mode mixt a mesura que la delaminació creix. Per a aquest anàlisi, es tenen em compte dos mètodes teòrics presents en la literatura. No obstant, les expressions resultants per l'assaig MMELS no són equivalents i les diferències entre els dos mètodes poden ser importants, fins a 50 vegades. Per aquest motiu, en aquest treball es porta a terme un anàlisi alternatiu més acurat del MMELS per tal d'establir una comparació. Aquest anàlisi alternatiu es basa en el mètode dels elements finits i virtual crack closure technique (VCCT). D'aquest anàlisi en resulten importants aspectes a considerar per a la bona caracterització de materials utilitzant l'assaig MMELS. Durant l'estudi s'ha dissenyat i construït un utillatge per l'assaig MMELS. Per a la caracterització experimental de la propagació per fatiga de delaminacions en mode mixt variable s'utilitzen diferents provetes de laminats carboni/epoxy essencialment unidireccionals. També es du a terme un anàlisi fractogràfic d'algunes de les superfícies de fractura per delaminació. Els resultats experimentals són comparats amb les prediccions del model proposat per la propagació per fatiga d'esquerdes interlaminars.
Resumo:
A study of the formation and propagation of volume anomalies in North Atlantic Mode Waters is presented, based on 100 yr of monthly mean fields taken from the control run of the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). Analysis of the temporal and. spatial variability in the thickness between pairs of isothermal surfaces bounding the central temperature of the three main North Atlantic subtropical mode waters shows that large-scale variability in formation occurs over time scales ranging from 5 to 20 yr. The largest formation anomalies are associated with a southward shift in the mixed layer isothermal distribution, possibly due to changes in the gyre dynamics and/or changes in the overlying wind field and air-sea heat fluxes. The persistence of these anomalies is shown to result from their subduction beneath the winter mixed layer base where they recirculate around the subtropical gyre in the background geostrophic flow. Anomalies in the warmest mode (18 degrees C) formed on the western side of the basin persist for up to 5 yr. They are removed by mixing transformation to warmer classes and are returned to the seasonal mixed layer near the Gulf Stream where the stored heat may be released to the atmosphere. Anomalies in the cooler modes (16 degrees and 14 degrees C) formed on the eastern side of the basin persist for up to 10 yr. There is no clear evidence of significant transformation of these cooler mode anomalies to adjacent classes. It has been proposed that the eastern anomalies are removed through a tropical-subtropical water mass exchange mechanism beneath the trade wind belt (south of 20 degrees N). The analysis shows that anomalous mode water formation plays a key role in the long-term storage of heat in the model, and that the release of heat associated with these anomalies suggests a predictable climate feedback mechanism.
Resumo:
Investigation of the fracture mode for hard and soft wheat endosperm was aimed at gaining a better understanding of the fragmentation process. Fracture mechanical characterization was based on the three-point bending test which enables stable crack propagation to take place in small rectangular pieces of wheat endosperm. The crack length can be measured in situ by using an optical microscope with light illumination from the side of the specimen or from the back of the specimen. Two new techniques were developed and used to estimate the fracture toughness of wheat endosperm, a geometric approach and a compliance method. The geometric approach gave average fracture toughness values of 53.10 and 27.0 J m(-2) for hard and soft endosperm, respectively. Fracture toughness estimated using the compliance method gave values of 49.9 and 29.7 J m(-2) for hard and soft endosperm, respectively. Compressive properties of the endosperm in three mutually perpendicular axes revealed that the hard and soft endosperms are isotropic composites. Scanning electron microscopy (SEM) observation of the fracture surfaces and the energy-time curves of loading-unloading cycles revealed that there was a plastic flow during crack propagation for both the hard and soft endosperms, and confirmed that the fracture mode is significantly related to the adhesion level between starch granules and the protein matrix.
Resumo:
We provide a system identification framework for the analysis of THz-transient data. The subspace identification algorithm for both deterministic and stochastic systems is used to model the time-domain responses of structures under broadband excitation. Structures with additional time delays can be modelled within the state-space framework using additional state variables. We compare the numerical stability of the commonly used least-squares ARX models to that of the subspace N4SID algorithm by using examples of fourth-order and eighth-order systems under pulse and chirp excitation conditions. These models correspond to structures having two and four modes simultaneously propagating respectively. We show that chirp excitation combined with the subspace identification algorithm can provide a better identification of the underlying mode dynamics than the ARX model does as the complexity of the system increases. The use of an identified state-space model for mode demixing, upon transformation to a decoupled realization form is illustrated. Applications of state-space models and the N4SID algorithm to THz transient spectroscopy as well as to optical systems are highlighted.
Resumo:
In this paper we are mainly concerned with the development of efficient computer models capable of accurately predicting the propagation of low-to-middle frequency sound in the sea, in axially symmetric (2D) and in fully 3D environments. The major physical features of the problem, i.e. a variable bottom topography, elastic properties of the subbottom structure, volume attenuation and other range inhomogeneities are efficiently treated. The computer models presented are based on normal mode solutions of the Helmholtz equation on the one hand, and on various types of numerical schemes for parabolic approximations of the Helmholtz equation on the other. A new coupled mode code is introduced to model sound propagation in range-dependent ocean environments with variable bottom topography, where the effects of an elastic bottom, of volume attenuation, surface and bottom roughness are taken into account. New computer models based on finite difference and finite element techniques for the numerical solution of parabolic approximations are also presented. They include an efficient modeling of the bottom influence via impedance boundary conditions, they cover wide angle propagation, elastic bottom effects, variable bottom topography and reverberation effects. All the models are validated on several benchmark problems and versus experimental data. Results thus obtained were compared with analogous results from standard codes in the literature.