1000 resultados para Mizoroki–Heck reaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphitic carbon nitride (g-C3N4), as a promising metal-free catalyst for photo-catalytic and electrochemical water splitting, has recently attracted tremendous research interest. However, the underlying catalytic mechanism for the hydrogen evolution reaction (HER) is not fully understood. By using density functional theory calculations, here we have established that the binding free energy of hydrogen atom (ΔGH∗0) on g-C3N4 is very sensitive to mechanical strain, leading to substantial tuning of the HER performance of g-C3N4 at different coverages. The experimentally-observed high HER activity in N-doped graphene supported g-C3N4 (Zheng et al., 2014) is actually attributed to electron-transfer induced strain. A more practical strategy to induce mechanical strain in g-C3N4 is also proposed by doping a bridge carbon atom in g-C3N4 with an isoelectronic silicon atom. The calculated ΔGH∗0 on the Si-doped g-C3N4 is ideal for HER. Our results indicate that g-C3N4 would be an excellent metal-free mechano-catalyst for HER and this finding is expected to guide future experiments to efficiently split water into hydrogen based on the g-C3N4 materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the title compound (1a) with anhydrous MeOH-HCl gave 2-endo-(2,6-dimethoxyphenyl)-2-exo-methyl-5-methylbicyclo[3.2.1]octane-6,8-dione (3a), 1,5,14-timethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),9(11)-tetraen-17-one (4), 1,5-dimethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),8,14-pentaen-17-one (5), and 3,4,5,6-tetrahydro-2,7-dimethoxy-3,6-dimethyl-3,2,6-(13-oxopropan[1]yI[3]ylidene)-2H-1-benzoxocin (6). Structures assigned to compounds (3a), (4), and (6) are based on spectral data. The exo-tricyclic acetal structure (6) was further confirmed by the analysis of the 1H n.m.r. spectra of the isomeric alcohols (11) and (12), obtained by sodium borohydride reduction of (6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vilsmeier reaction on a few representative 6- and 7-methoxy-1- and 2-tetralones has been investigated. While 1-tetralones give the corresponding 1-chloro-2-formyl3, 4-dihydronaphthalenes, the 2-tetralones afford 1,3-bisformyl-2-chloronaphthalenes. Spectral characteristics of all the products obtained are given and a mechanistic proposal has been made to explain the observed chlorobisformylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single electron transfer-nitroxide radical coupling (SET-NRC) reaction has been used to produce multiblock polymers with high molecular weights in under 3 min at 50◦C by coupling a difunctional telechelic polystyrene (Br-PSTY-Br)with a dinitroxide. The well known combination of dimethyl sulfoxide as solvent and Me6TREN as ligand facilitated the in situ disproportionation of CuIBr to the highly active nascent Cu0 species. This SET reaction allowed polymeric radicals to be rapidly formed from their corresponding halide end-groups. Trapping of these carbon-centred radicals at close to diffusion controlled rates by dinitroxides resulted in high-molecular-weight multiblock polymers. Our results showed that the disproportionation of CuI was critical in obtaining these ultrafast reactions, and confirmed that activation was primarily through Cu0. We took advantage of the reversibility of the NRC reaction at elevated temperatures to decouple the multiblock back to the original PSTY building block through capping the chain-ends with mono-functional nitroxides. These alkoxyamine end-groups were further exchanged with an alkyne mono-functional nitroxide (TEMPO–≡) and ‘clicked’ by a CuI-catalyzed azide/alkyne cycloaddition (CuAAC) reaction with N3–PSTY–N3 to reform the multiblocks. This final ‘click’ reaction, even after the consecutive decoupling and nitroxide-exchange reactions, still produced high molecular-weight multiblocks efficiently. These SET-NRC reactions would have ideal applications in re-usable plastics and possibly as self-healing materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was prompted by the need to be able to identify the invasive mussel species, Perna viridis, in tropical Australian seas using techniques that do not rely solely on morphology. DNA-based molecular methods utilizing a polymerase chain reaction (PCR) approach were developed to distinguish unambiguously between the three species in the genus Perna. Target regions were portions of two mitochondrial genes, cox1 and nad4, and the intergenic spacer between these that occurs in at least two Perna species. Based on interspecific sequence comparisons of the nad4 gene, a conserved primer has been designed that can act as a forward primer in PCRs for any Perna species. Four reverse primers have also been designed, based on nad4 and intergenic spacer sequences, which yield species-specific products of different lengths when paired with the conserved forward primer. A further pair of primers has been designed that will amplify part of the cox1 gene of any Perna species, and possibly other molluscs, as a positive control to demonstrate that the PCR is working.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene-nanocrystalline metal sulphide composites were prepared by a one-pot reaction. A dispersion of graphite oxide layers in an aqueous solution of metal ions (Cd2+/Zn2+) was reacted with H2S gas, which acts as a sulphide source as well as a reducing agent, resulting in the formation of metal sulphide nanoparticles and simultaneous reduction of graphite oxide sheets to graphene sheets. The surface defect related emissions shown by free metal sulphide particles are quenched in the composites due to the interaction of the surface of the nanoparticles with graphene sheets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved resonance Raman spectroscopy (TR3) has been used to study the effect of solvent polarity on the mechanism and nature of intermediates formed in photoinduced electron-transfer reaction between triplet flouranil ((FL)-F-3) and tetramethylbenzene (TMB). Comparison of the TR3 spectra in polar, nonpolar, and medium polar media suggests that formation of radical anion due to electron-transfer reaction between (FL)-F-3 and TMB is favored in more polar solvents, whereas ketyl radical formation is more favored in less polar media. Compared to ketyl radical, the extent of radical anion formation is negligible in nonpolar solvents. Therefore, it is inferred that in nonpolar media ketyl radical is mainly generated by hydrogen-transfer reaction in the encounter complex between (FL)-F-3 and TMB. In solvents of medium polarity, the ion-pair decay leads to the formation of both ketyl radical and ketyl radical formed from the encounter between triplet state and the donor. Thus, competition between the formation of ketyl radical and ion pair is influenced by the solvent polarity. The nature of the ion pair in different solvent polarity has been investigated from the changes observed in the vibrational frequency of (fluoranil) FL part of the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxides of cobalt have recently been shown to be highly effective electrocatalysts for the oxygen evolution reaction (OER) under alkaline conditions. In general species such as Co3O4 and CoOOH have been investigated that often require an elevated temperature step during their synthesis to create crystalline materials. In this work we investigate the rapid and direct electrochemical formation of amorphous nanostructured Co(OH)2 on gold electrodes under room temperture conditions which is a highly active precursor for the OER. During the OER some conversion to crystalline Co3O4 occurs at the surface, but the bulk of the material remains amorphous. It is found that the underlying gold electrode is crucial to the materials enhanced performance and provides higher current density than can be achieved using carbon, palladium or copper support electrodes. This catalyst exhibits excellent activity with a current density of 10 mA cm-2 at an overpotential of 360 mV with a high turnover frequency of 2.1 s-1 in 1 M NaOH. A Tafel slope of 56 mV dec-1 at low overpotentials and a slope of 122 mV dec-1 at high overpotentials is consistent with the dual barrier model for the electrocatalytic evolution of oxygen. Significantly, the catalyst maintains excellent activity for up to 24 hr of continuous operation and this approach offers a facile way to create a highly effective and stable material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0reaction rate, and (iv) the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t).