952 resultados para Mixed integer non-linear programming (MINLP)
Resumo:
Background: This study examined the daily surgical scheduling problem in a teaching hospital. This problem relates to the use of multiple operating rooms and different types of surgeons in a typical surgical day with deterministic operation durations (preincision, incision, and postincision times). Teaching hospitals play a key role in the health-care system; however, existing models assume that the duration of surgery is independent of the surgeon's skills. This problem has not been properly addressed in other studies. We analyze the case of a Spanish public hospital, in which continuous pressures and budgeting reductions entail the more efficient use of resources. Methods: To obtain an optimal solution for this problem, we developed a mixed-integer programming model and user-friendly interface that facilitate the scheduling of planned operations for the following surgical day. We also implemented a simulation model to assist the evaluation of different dispatching policies for surgeries and surgeons. The typical aspects we took into account were the type of surgeon, potential overtime, idling time of surgeons, and the use of operating rooms. Results: It is necessary to consider the expertise of a given surgeon when formulating a schedule: such skill can decrease the probability of delays that could affect subsequent surgeries or cause cancellation of the final surgery. We obtained optimal solutions for a set of given instances, which we obtained through surgical information related to acceptable times collected from a Spanish public hospital. Conclusions: We developed a computer-aided framework with a user-friendly interface for use by a surgical manager that presents a 3-D simulation of the problem. Additionally, we obtained an efficient formulation for this complex problem. However, the spread of this kind of operation research in Spanish public health hospitals will take a long time since there is a lack of knowledge of the beneficial techniques and possibilities that operational research can offer for the health-care system.
Resumo:
The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.
Resumo:
2010 Mathematics Subject Classification: 97D40, 97M10, 97M40, 97N60, 97N80, 97R80
Resumo:
Privacy issues and data scarcity in PET field call for efficient methods to expand datasets via synthetic generation of new data that cannot be traced back to real patients and that are also realistic. In this thesis, machine learning techniques were applied to 1001 amyloid-beta PET images, which had undergone a diagnosis of Alzheimer’s disease: the evaluations were 540 positive, 457 negative and 4 unknown. Isomap algorithm was used as a manifold learning method to reduce the dimensions of the PET dataset; a numerical scale-free interpolation method was applied to invert the dimensionality reduction map. The interpolant was tested on the PET images via LOOCV, where the removed images were compared with the reconstructed ones with the mean SSIM index (MSSIM = 0.76 ± 0.06). The effectiveness of this measure is questioned, since it indicated slightly higher performance for a method of comparison using PCA (MSSIM = 0.79 ± 0.06), which gave clearly poor quality reconstructed images with respect to those recovered by the numerical inverse mapping. Ten synthetic PET images were generated and, after having been mixed with ten originals, were sent to a team of clinicians for the visual assessment of their realism; no significant agreements were found either between clinicians and the true image labels or among the clinicians, meaning that original and synthetic images were indistinguishable. The future perspective of this thesis points to the improvement of the amyloid-beta PET research field by increasing available data, overcoming the constraints of data acquisition and privacy issues. Potential improvements can be achieved via refinements of the manifold learning and the inverse mapping stages during the PET image analysis, by exploring different combinations in the choice of algorithm parameters and by applying other non-linear dimensionality reduction algorithms. A final prospect of this work is the search for new methods to assess image reconstruction quality.
Resumo:
This work presents a fully non-linear finite element formulation for shell analysis comprising linear strain variation along the thickness of the shell and geometrically exact description for curved triangular elements. The developed formulation assumes positions and generalized unconstrained vectors as the variables of the problem, not displacements and finite rotations. The full 3D Saint-Venant-Kirchhoff constitutive relation is adopted and, to avoid locking, the rate of thickness variation enhancement is introduced. As a consequence, the second Piola-Kirchhoff stress tensor and the Green strain measure are employed to derive the specific strain energy potential. Curved triangular elements with cubic approximation are adopted using simple notation. Selected numerical simulations illustrate and confirm the objectivity, accuracy, path independence and applicability of the proposed technique.
Resumo:
The objective of this paper is two-fold: firstly, we develop a local and global (in time) well-posedness theory for a system describing the motion of two fluids with different densities under capillary-gravity waves in a deep water flow (namely, a Schrodinger-Benjamin-Ono system) for low-regularity initial data in both periodic and continuous cases; secondly, a family of new periodic traveling waves for the Schrodinger-Benjamin-Ono system is given: by fixing a minimal period we obtain, via the implicit function theorem, a smooth branch of periodic solutions bifurcating a Jacobian elliptic function called dnoidal, and, moreover, we prove that all these periodic traveling waves are nonlinearly stable by perturbations with the same wavelength.
Resumo:
This work presents a non-linear boundary element formulation applied to analysis of contact problems. The boundary element method (BEM) is known as a robust and accurate numerical technique to handle this type of problem, because the contact among the solids occurs along their boundaries. The proposed non-linear formulation is based on the use of singular or hyper-singular integral equations by BEM, for multi-region contact. When the contact occurs between crack surfaces, the formulation adopted is the dual version of BEM, in which singular and hyper-singular integral equations are defined along the opposite sides of the contact boundaries. The structural non-linear behaviour on the contact is considered using Coulomb`s friction law. The non-linear formulation is based on the tangent operator in which one uses the derivate of the set of algebraic equations to construct the corrections for the non-linear process. This implicit formulation has shown accurate as the classical approach, however, it is faster to compute the solution. Examples of simple and multi-region contact problems are shown to illustrate the applicability of the proposed scheme. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a physical non-linear formulation to deal with steel fiber reinforced concrete by the finite element method. The proposed formulation allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced in the pre-existent finite element numerical system to consider any distribution or quantity of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic of the formulation is the reduced work required by the user to introduce reinforcements, avoiding ""rebar"" elements, node by node geometrical definitions or even complex mesh generation. Bounded connection between long fibers and continuum is considered, for short fibers a simplified approach is proposed to consider splitting. Non-associative plasticity is adopted for the continuum and one dimensional plasticity is adopted to model fibers. Examples are presented in order to show the capabilities of the formulation.
Resumo:
This work deals with analysis of cracked structures using BEM. Two formulations to analyse the crack growth process in quasi-brittle materials are discussed. They are based on the dual formulation of BEM where two different integral equations are employed along the opposite sides of the crack surface. The first presented formulation uses the concept of constant operator, in which the corrections of the nonlinear process are made only by applying appropriate tractions along the crack surfaces. The second presented BEM formulation to analyse crack growth problems is an implicit technique based on the use of a consistent tangent operator. This formulation is accurate, stable and always requires much less iterations to reach the equilibrium within a given load increment in comparison with the classical approach. Comparison examples of classical problem of crack growth are shown to illustrate the performance of the two formulations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study presents a solid-like finite element formulation to solve geometric non-linear three-dimensional inhomogeneous frames. To achieve the desired representation, unconstrained vectors are used instead of the classic rigid director triad; as a consequence, the resulting formulation does not use finite rotation schemes. High order curved elements with any cross section are developed using a full three-dimensional constitutive elastic relation. Warping and variable thickness strain modes are introduced to avoid locking. The warping mode is solved numerically in FEM pre-processing computational code, which is coupled to the main program. The extra calculations are relatively small when the number of finite elements. with the same cross section, increases. The warping mode is based on a 2D free torsion (Saint-Venant) problem that considers inhomogeneous material. A scheme that automatically generates shape functions and its derivatives allow the use of any degree of approximation for the developed frame element. General examples are solved to check the objectivity, path independence, locking free behavior, generality and accuracy of the proposed formulation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study presents an alternative three-dimensional geometric non-linear frame formulation based on generalized unconstrained vector and positions to solve structures and mechanisms subjected to dynamic loading. The formulation is classified as total Lagrangian with exact kinematics description. The resulting element presents warping and non-constant transverse strain modes, which guarantees locking-free behavior for the adopted three-dimensional constitutive relation, Saint-Venant-Kirchhoff, for instance. The application of generalized vectors is an alternative to the use of finite rotations and rigid triad`s formulae. Spherical and revolute joints are considered and selected dynamic and static examples are presented to demonstrate the accuracy and generality of the proposed technique. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this paper is to develop a mathematical model for the synthesis of anaerobic digester networks based on the optimization of a superstructure that relies on a non-linear programming formulation. The proposed model contains the kinetic and hydraulic equations developed by Pontes and Pinto [Chemical Engineering journal 122 (2006) 65-80] for two types of digesters, namely UASB (Upflow Anaerobic Sludge Blanket) and EGSB (Expanded Granular Sludge Bed) reactors. The objective function minimizes the overall sum of the reactor volumes. The optimization results show that a recycle stream is only effective in case of a reactor with short-circuit, such as the UASB reactor. Sensitivity analysis was performed in the one and two-digester network superstructures, for the following parameters: UASB reactor short-circuit fraction and the EGSB reactor maximum organic load, and the corresponding results vary considerably in terms of digester volumes. Scenarios for three and four-digester network superstructures were optimized and compared with the results from fewer digesters. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A rigorous derivation of non-linear equations governing the dynamics of an axially loaded beam is given with a clear focus to develop robust low-dimensional models. Two important loading scenarios were considered, where a structure is subjected to a uniformly distributed axial and a thrust force. These loads are to mimic the main forces acting on an offshore riser, for which an analytical methodology has been developed and applied. In particular, non-linear normal modes (NNMs) and non-linear multi-modes (NMMs) have been constructed by using the method of multiple scales. This is to effectively analyse the transversal vibration responses by monitoring the modal responses and mode interactions. The developed analytical models have been crosschecked against the results from FEM simulation. The FEM model having 26 elements and 77 degrees-of-freedom gave similar results as the low-dimensional (one degree-of-freedom) non-linear oscillator, which was developed by constructing a so-called invariant manifold. The comparisons of the dynamical responses were made in terms of time histories, phase portraits and mode shapes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The economic occupation of an area of 500 ha for Piracicaba was studied with the irrigated cultures of maize, tomato, sugarcane and beans, having used models of deterministic linear programming and linear programming including risk for the Target-Motad model, where two situations had been analyzed. In the deterministic model the area was the restrictive factor and the water was not restrictive for none of the tested situations. For the first situation the gotten maximum income was of R$ 1,883,372.87 and for the second situation it was of R$ 1,821,772.40. In the model including risk a producer that accepts risk can in the first situation get the maximum income of R$ 1,883,372. 87 with a minimum risk of R$ 350 year(-1), and in the second situation R$ 1,821,772.40 with a minimum risk of R$ 40 year(-1). Already a producer averse to the risk can get in the first situation a maximum income of R$ 1,775,974.81 with null risk and for the second situation R$ 1.707.706, 26 with null risk, both without water restriction. These results stand out the importance of the inclusion of the risk in supplying alternative occupations to the producer, allowing to a producer taking of decision considered the risk aversion and the pretension of income.
Resumo:
Four adducts of triphenylphosphine oxide with aromatic carboxylic acids have been synthesized and tested for second-order non-linear optical properties. These were with N-methylpyrrole-2-carboxylic acid (I), indole-2-carboxylic acid (2), 3-dimethylaminobenzoic acid (3), and thiophen-2-carboxylic acid (4). Compound (1) produced clear, colourless crystals (space group P2(1)2(1)2(1) With a 9.892(1), b 14.033(1), c 15.305(1) Angstrom, Z 4) which allowed the structure to be determined by X-ray diffraction.