1000 resultados para Missions -- Madagascar.
Resumo:
Globally, priority areas for biodiversity are relatively well known, yet few detailed plans exist to direct conservation action within them, despite urgent need. Madagascar, like other globally recognized biodiversity hot spots, has complex spatial patterns of endemism that differ among taxonomic groups, creating challenges for the selection of within-country priorities. We show, in an analysis of wide taxonomic and geographic breadth and high spatial resolution, that multitaxonomic rather than single-taxon approaches are critical for identifying areas likely to promote the persistence of most species. Our conservation prioritization, facilitated by newly available techniques, identifies optimal expansion sites for the Madagascar government's current goal of tripling the land area under protection. Our findings further suggest that high-resolution multitaxonomic approaches to prioritization may be necessary to ensure protection for biodiversity in other global hot spots.
Resumo:
Madagascar is home to numerous endemic species and lineages, but the processes that have contributed to its endangered diversity are still poorly understood. Evidence is accumulating to demonstrate the importance of Tertiary dispersal across varying distances of oceanic barriers, supplementing vicariance relationships dating back to the Cretaceous, but these hypotheses remain tentative in the absence of well-supported phylogenies. In the Papilio demoleus group of swallowtail butterflies, three of the five recognized species are restricted to Madagascar, whereas the remaining two species range across the Afrotropical zone and southern Asia plus Australia. We reconstructed phylogenetic relationships for all species in the P. demoleus group, as well as 11 outgroup Papilio species, using 60 morphological characters and about 4 kb of nucleotide sequences from two mitochondrial (cytochrome oxidase I and II) and two nuclear (wg and EF-1a) genes. Of the three endemic Malagasy species, the two that are formally listed as endangered or at risk represented the most basal divergences in the group, while the more common third endemic was clearly related to African P. demodocus. The fifth species, P. demoleus, showed little differentiation across southern Asia, but showed divergence from its subspecies sthenelus in Australia. Dispersal-vicariance analysis using cladograms derived from morphology and three independent genes indicated a Malagasy diversification of lime swallowtails in the middle Miocene. Thus, diversification processes on the island of Madagascar may have contributed to the origin of common butterflies that now occur throughout much of the Old World tropical and subtemperate regions. An alternative hypothesis, that Madagascar is a refuge for ancient lineages resulting from successive colonizations from Africa, is less parsimonious and does not explain the relatively low continental diversity of the group.
Resumo:
Madagascar's imperilled biota are now experiencing the effects of a new threat—climate change (Raxworthy et al. 2008). With more than 90% endemism among plants, mammals, reptiles and amphibians, the stakes are high. The pristine landscapes that allowed this exceptional biodiversity to survive past climate changes are largely gone. Deforestation has claimed approximately 90% of the island's natural forest (Ingram & Dawson 2005; Harper et al. 2007) and what remains is highly fragmented, providing a poor template for large-scale species range shifts. The impacts of current and future climate change may therefore be much different than past impacts, with profound implications for biodiversity.
We review evidence of past response to climate change, models of future change and projected biological response, developing insights to formulate adaptation actions for reducing extinction in Madagascar's biota. We then explore the cost of implementing actions and examine new income opportunities developing through efforts to mitigate climate change.
Resumo:
Madagascar has lost about half of its forest cover since 1953 with much regional variation, for instance most of the coastal lowland forests have been cleared. We sampled the endemic forest dwelling Helictopleurini dung beetles across Madagascar during 2002–2006. Our samples include 29 of the 51 previously known species for which locality information is available. The most significant factor explaining apparent extinctions (species not collected by us) is forest loss within the historical range of the focal species, suggesting that deforestation has already caused the extinction, or effective extinction, of a large number of insect species with small geographical ranges, typical for many endemic taxa in Madagascar. Currently, roughly 10% of the original forest cover remains. Species–area considerations suggest that this will allow roughly half of the species to persist. Our results are consistent with this prediction.
Resumo:
Madagascan frogs of the mantellid genus Mantella have been a rich source of alkaloids derived from dietary arthropods. Two species of frogs, inhabiting swamp forest, contain a unique set of alkaloids, previously proposed, based only on GC-MS and GC-FTIR data, to represent dehydro analogues of the homopumiliotoxins. The major alkaloid of this set, alkaloid 235C (2), now has been isolated in sufficient quantities (ca. 0.3 mg) to allow determination of the structure by NMR analysis. The structure of alkaloid 235C proved to be a 7,8-dehydro-8-desmethylpumiliotoxin. A comparison is presented between the mass, infrared, and H-1 NMR spectra of 235C (2) and a synthetic dehydrohomopumiliotoxin (1), initially proposed incorrectly as the structure for 235C.
Resumo:
We examined the cost of conserving species as climate changes using Madagascar as an example. We used a Maxent species distribution model to predict the ranges of 74 plant species endemic to the forests of Madagascar from 2000-2080 in three climate scenarios. We set a conservation target of achieving 10,000 hectares of forest cover for each species, and calculated the cost of achieving this target under each climate scenario. We interviewed natural forest restoration project managers and conducted a literature review to obtain the net present cost per hectare of management actions to maintain or establish forest cover. For each species we added hectares of land from lowest to highest cost per additional year of forest cover until the conservation target was achieved throughout the time period. Climate change was predicted to reduce the size of species’ ranges, the overlap between species’ ranges and existing or planned protected areas, and the overlap between species’ ranges and existing forest. As a result, climate change increased the cost of achieving the conservation target by necessitating successively more costly management actions: additional management within existing protected areas (US$0-60/ha), avoidance of forest degradation (loss of biomass) in community-managed areas ($160-576/ha), avoidance of deforestation in unprotected areas ($252-1069/ha), and establishment of forest on non-forested land within protected areas ($802-2710/ha), in community-managed areas ($962-3226/ha), and in unprotected areas ($1054-3719/ha). Our results suggest that though forest restoration may be required for the conservation of some species as climate changes, it is more cost-effective to maintain existing forest wherever possible.
Resumo:
Drawing on a cultural, transnational and genealogical approach, this article studies the work of a Swiss missionary, Henri-Philippe Junod, between Europe and Africa. It tries not to look at what he brought to Africa, or brought back from Africa, but to see how his back-and-forth movement contributed to the formation of new ideas and institutions globally. The article looks at Junod’s contribution in three domains in particular, namely anthropology, human rights worldwide, and African studies in Switzerland.
Resumo:
The greatest common threat to birds in Madagascar has historically been from anthropogenic deforestation. During recent decades, global climate change is now also regarded as a significant threat to biodiversity. This study uses Maximum Entropy species distribution modeling to explore how potential climate change could affect the distribution of 17 threatened forest endemic bird species, using a range of climate variables from the Hadley Center's HadCM3 climate change model, for IPCC scenario B2a, for 2050. We explore the importance of forest cover as a modeling variable and we test the use of pseudo-presences drawn from extent of occurrence distributions. Inclusion of the forest cover variable improves the models and models derived from real-presence data with forest layer are better predictors than those from pseudo-presence data. Using real-presence data, we analyzed the impacts of climate change on the distribution of nine species. We could not predict the impact of climate change on eight species because of low numbers of occurrences. All nine species were predicted to experience reductions in their total range areas, and their maximum modeled probabilities of occurrence. In general, species range and altitudinal contractions follow the reductive trend of the Maximum presence probability. Only two species (Tyto soumagnei and Newtonia fanovanae) are expected to expand their altitude range. These results indicate that future availability of suitable habitat at different elevations is likely to be critical for species persistence through climate change. Five species (Eutriorchis astur, Neodrepanis hypoxantha, Mesitornis unicolor, Euryceros prevostii, and Oriola bernieri) are probably the most vulnerable to climate change. Four of them (E. astur, M. unicolor, E. prevostii, and O. bernieri) were found vulnerable to the forest fragmentation during previous research. Combination of these two threats in the future could negatively affect these species in a drastic way. Climate change is expected to act differently on each species and it is important to incorporate complex ecological variables into species distribution models.
A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar
Resumo:
Pattern and process are inextricably linked in biogeographic analyses, though we can observe pattern, we must infer process. Inferences of process are often based on ad hoc comparisons using a single spatial predictor. Here, we present an alternative approach that uses mixed-spatial models to measure the predictive potential of combinations of hypotheses. Biodiversity patterns are estimated from 8,362 occurrence records from 745 species of Malagasy amphibians and reptiles. By incorporating 18 spatially explicit predictions of 12 major biogeographic hypotheses, we show that mixed models greatly improve our ability to explain the observed biodiversity patterns. We conclude that patterns are influenced by a combination of diversification processes rather than by a single predominant mechanism. A ‘one-size-fits-all’ model does not exist. By developing a novel method for examining and synthesizing spatial parameters such as species richness, endemism and community similarity, we demonstrate the potential of these analyses for understanding the diversification history of Madagascar’s biota.
Resumo:
This study of the Mahavavy-Kinkony Wetland Complex (MKWC) assesses the impacts of habitat change on the resident globally threatened fauna. Located in Boeny Region, northwest Madagascar, the Complex encompasses a range of habitats including freshwater lakes, rivers, marshes, mangrove forests, and deciduous forest. Spatial modelling and analysis tools were used to (i) identify the important habitats for selected, threatened fauna, (ii) assess their change from 1950 to 2005, (iii) detect the causes of change, (iv) simulate changes to 2050 and (v) evaluate the impacts of change. The approach for prioritising potential habitats for threatened species used ecological science techniques assisted by the decision support software Marxan. Nineteen species were analysed: nine birds, three primates, three fish, three bats and one reptile. Based on knowledge of local land use, supervised classification of Landsat images from 2005 was used to classify the land use of the Complex. Simulations of land use change to 2050 were carried out based on the Land Change Modeler module in Idrisi Andes with the neural network algorithm. Changes in land use at site level have occurred over time but they are not significant. However, reductions in the extent of reed marshes at Lake Kinkony and forests at Tsiombikibo and Marofandroboka directly threaten the species that depend on these habitats. Long term change monitoring is recommended for the Mahavavy Delta, in order to evaluate the predictions through time. The future change of Andohaomby forest is of great concern and conservation actions are recommended as a high priority. Abnormal physicochemical properties were detected in lake Kinkony due to erosion of the four watersheds to the south, therefore an anti-erosion management plan is required for these watersheds. Among the species of global conservation concern, Sakalava rail (Amaurornis olivieri), Crowned sifaka (Propithecus coronatus) and dambabe (Paretroplus dambabe) are estimated the most affected, but at the site level Decken’s sifaka (Propithecus deckeni), kotsovato (Paretroplus kieneri) and Madagascan big-headed turtle (Erymnochelys madagascariensis) are also threatened. Local enforcement of national legislation on hunting means that MKWC is among the sites where the flying fox (Pteropus rufus) and Madagascan rousette (Rousettus madagascariensis) are well protected. Ecological restoration, ecological research and actions to reduce anthropogenic pressures are recommended.
Resumo:
The crowned sifaka (Propithecus coronatus) and Decken’s sifaka (Propithecus deckenii) are Endangered lemurs endemic to west and central Madagascar. Both have suffered habitat loss and fragmentation throughout their ranges. The goal
of this study, conducted in the Mahavavy-Kinkony Wetland Complex (MKWC) in northwestern Madagascar, was to assess the effects of historical change in the species’ habitats, and to model the potential impact of further land-use change on their habitats. The IDRISI Andes Geographical Information System and image-processing software was used for satellite-image classifiation, and the Land Change Modeler was used to compare the natural habitat of the species from 1973 to 2005, and to predict available habitat for 2050. We analyzed two forests in the MKWC occupied by P. coronatus (Antsilaiza and Anjohibe), and three forests occupied by P. deckenii (Tsiombikibo, Marofandroboka and Andohaomby). The two forests occupied by P. coronatus contracted during the period 1949–1973, but then expanded to exceed their 1949 area by 28% in 2005. However, the land change model predicted that they will contract again to match their 1949 area by 2050, and will again lose their corridor connection, meaning that the conservation gains for this species in the complex are at risk of being reversed. The three forests occupied by P. deckenii have declined in area steadily since 1949, losing 20% of their original area by 2005, and are predicted to lose a further 15% of their original area by 2050. Both species are therefore at risk of becoming even more threatened if land-use change continues within the complex. Improved conservation of the remaining forest is recommended to avoid further loss, as well as ecological restoration and reforestation to promote connectivity between the forests. A new strategy for controlling agriculture and forest use is required in order to avoid further destruction of the forest.
Resumo:
The introduction of Protestantism into the Middle East by American missionaries in the nineteenth century met with limited success while the responses and internalizations of local converts proved incredibly diverse. The two resultant theological descendants are Palestinian Christian Zionists and Palestinian Liberation Theologists. The article provides a short history of these two movements and highlights influential voices through interviews and media analysis. This article argues that hybrid religious identifications with nation and place has transcended, in some cases, political struggle for territory.