832 resultados para Mining industries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanoma is a highly aggressive and therapy resistant tumor for which the identification of specific markers and therapeutic targets is highly desirable. We describe here the development and use of a bioinformatic pipeline tool, made publicly available under the name of EST2TSE, for the in silico detection of candidate genes with tissue-specific expression. Using this tool we mined the human EST (Expressed Sequence Tag) database for sequences derived exclusively from melanoma. We found 29 UniGene clusters of multiple ESTs with the potential to predict novel genes with melanoma-specific expression. Using a diverse panel of human tissues and cell lines, we validated the expression of a subset of three previously uncharacterized genes (clusters Hs.295012, Hs.518391, and Hs.559350) to be highly restricted to melanoma/melanocytes and named them RMEL1, 2 and 3, respectively. Expression analysis in nevi, primary melanomas, and metastatic melanomas revealed RMEL1 as a novel melanocytic lineage-specific gene up-regulated during melanoma development. RMEL2 expression was restricted to melanoma tissues and glioblastoma. RMEL3 showed strong up-regulation in nevi and was lost in metastatic tumors. Interestingly, we found correlations of RMEL2 and RMEL3 expression with improved patient outcome, suggesting tumor and/or metastasis suppressor functions for these genes. The three genes are composed of multiple exons and map to 2q12.2, 1q25.3, and 5q11.2, respectively. They are well conserved throughout primates, but not other genomes, and were predicted as having no coding potential, although primate-conserved and human-specific short ORFs could be found. Hairpin RNA secondary structures were also predicted. Concluding, this work offers new melanoma-specific genes for future validation as prognostic markers or as targets for the development of therapeutic strategies to treat melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crushed stone mining is the third largest mining economy in Brazil, where almost half is produced in the Sao Paulo metropolitan region. The segment registers the highest number of accidents among the extractive industries, which justifies the concern with workers` health and safety, and the importance of controlling occupational hazards. Since 2002, the NR-22 Standard (NR-22: Occupational Health and Safety in Mining) makes compulsory the elaboration of a Risk Management Program that identifies risks and establishes control measures. Considering the crushed stone mining industry importance to the state, this paper evaluates and discusses the risks identified in unit operations during the production process of crushed stone in an open pit mine in order to propose control measures for the development of the Risk Management Program. Although this study refers to a specific quarry, it can be applied to other mines from the same sector since some considerations are made regarding differences in manufacturing processes. The research was based on the identification of the main risks associated with drilling, blasting, load & haulage, crushing and screening through field measurements of some hazardous agents, together with company reports. The results contributed to the choice of the appropriate control measures for the improvement Of workers` health and safety conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the 1990s several large companies have been publishing nonfinancial performance reports. Focusing initially on the physical environment, these reports evolved to consider social relations, as well as data on the firm`s economic performance. A few mining companies pioneered this trend, and in the last years some of them incorporated the three dimensions of sustainable development, publishing so-called sustainability reports. This article reviews 31 reports published between 2001 and 2006 by four major mining companies. A set of 62 assessment items organized in six categories (namely context and commitment, management, environmental, social and economic performance, and accessibility and assurance) were selected to guide the review. The items were derived from international literature and recommended best practices, including the Global Reporting Initiative G3 framework. A content analysis was performed using the report as a sampling unit, and using phrases, graphics, or tables containing certain information as data collection units. A basic rating scale (0 or 1) was used for noting the presence or absence of information and a final percentage score was obtained for each report. Results show that there is a clear evolution in report`s comprehensiveness and depth. Categories ""accessibility and assurance"" and ""economic performance"" featured the lowest scores and do not present a clear evolution trend in the period, whereas categories ""context and commitment"" and ""social performance"" presented the best results and regular improvement; the category ""environmental performance,"" despite it not reaching the biggest scores, also featured constant evolution. Description of data measurement techniques, besides more comprehensive third-party verification are the items most in need of improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many techniques for electricity market price forecasting. However, most of them are designed for expected price analysis rather than price spike forecasting. An effective method of predicting the occurrence of spikes has not yet been observed in the literature so far. In this paper, a data mining based approach is presented to give a reliable forecast of the occurrence of price spikes. Combined with the spike value prediction techniques developed by the same authors, the proposed approach aims at providing a comprehensive tool for price spike forecasting. In this paper, feature selection techniques are firstly described to identify the attributes relevant to the occurrence of spikes. A simple introduction to the classification techniques is given for completeness. Two algorithms: support vector machine and probability classifier are chosen to be the spike occurrence predictors and are discussed in details. Realistic market data are used to test the proposed model with promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing economic globalisation (a means of market extension) may increase the economic vulnerability of firms in modern industries, especially those in which firms experience substantial economies of scale. The possibility is explored that globalisation activates competitive pressures that forces firms into a situation where their leverage (fixed costs relative to variable costs, or overhead cost relative to operating costs or capital intensity) rises substantially. Consequently, they become increasingly vulnerable to a sudden adverse change in economic conditions, such as a collapse in the demand for their industry’s product. This is explored for monopolistically competitive markets and also for oligopolistic markets of the type considered and modelled by Sweezy using kinked demand curves. In addition, globalisation is hypothesised to induce firms to become more uniformly efficient. While this has static efficiency advantages, this lack of heterogeneity in productive efficiency of firms can make for economic inefficiency in the adjustment of the industry to altered economic conditions. It is shown that lack of variation in the economic efficiency of firms can impede the speed of market adjustment to new equilibria and may destabilise market equilibria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new technologies for Knowledge Discovery from Databases (KDD) and data mining promise to bring new insights into a voluminous growing amount of biological data. KDD technology is complementary to laboratory experimentation and helps speed up biological research. This article contains an introduction to KDD, a review of data mining tools, and their biological applications. We discuss the domain concepts related to biological data and databases, as well as current KDD and data mining developments in biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops an interactive approach for exploratory spatial data analysis. Measures of attribute similarity and spatial proximity are combined in a clustering model to support the identification of patterns in spatial information. Relationships between the developed clustering approach, spatial data mining and choropleth display are discussed. Analysis of property crime rates in Brisbane, Australia is presented. A surprising finding in this research is that there are substantial inconsistencies in standard choropleth display options found in two widely used commercial geographical information systems, both in terms of definition and performance. The comparative results demonstrate the usefulness and appeal of the developed approach in a geographical information system environment for exploratory spatial data analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principle of using induction rules based on spatial environmental data to model a soil map has previously been demonstrated Whilst the general pattern of classes of large spatial extent and those with close association with geology were delineated small classes and the detailed spatial pattern of the map were less well rendered Here we examine several strategies to improve the quality of the soil map models generated by rule induction Terrain attributes that are better suited to landscape description at a resolution of 250 m are introduced as predictors of soil type A map sampling strategy is developed Classification error is reduced by using boosting rather than cross validation to improve the model Further the benefit of incorporating the local spatial context for each environmental variable into the rule induction is examined The best model was achieved by sampling in proportion to the spatial extent of the mapped classes boosting the decision trees and using spatial contextual information extracted from the environmental variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new environment of the companies, result of the relative opening of the market caused by the globalization has set a new challenge to assure the continuity of the businesses. Competitive strategies have been implemented aiming to overcome such challenge and, amongst them, strategic alliances have shown to be a viable alternative. In this context, this article has as objective to investigate the degree of use of strategic alliances by the medium and large companies of the shoes industries located in clusters of Vale do Rio dos Sinos (RS) and Franca (SP). This exploratory and descriptive research had the participation of 54 companies, being 3 from Vale do Rio dos Sinos and 21 from Franca, which answered a questionnaire with closed questions. The analysis of the data was given through descriptive statistics. Main conclusions, follow as: (1) the majority of the companies have joint activities; (2) the companies are nearer to alliances that do business than to the strategic ones; (3) alliances with competitors are inexpressive - suppliers and customers predominate; (4) the control of alliances result is insufficient; (5) trust and adequate partner are determinative factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a case study that explores how operator digging style juxtaposes with mechanical capability for a class of hydraulic mining excavators. The relationships between actuator and digging forces are developed and these are used to identify the excavator's capability to apply forces in various directions. Two distinct modes of operation are examined to see how they relate to the mechanical capabilities of the linkage and to establish if one has merit over the other. It is found that one of these styles results in lower loading of the machine.