991 resultados para Mineralization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several pathologies have been diagnosed in children of hypertensive mothers; however, some studies that evaluated the alterations in their oral health are not conclusive. This study analyzed the salivary gland activity and dental mineralization of offsprings of spontaneously hypertensive rats (SHR). Thirty-day-old SHR males and Wistar rats were studied. The salivary flow was evaluated by injection of pilocarpine, the protein concentration and salivary amylase activity, by the Lowry method and kinetic method at 405 nm, respectively. Enamel and dentin mineralization of the mandibular incisors was quantified with aid of the microhardness meter. The results were analyzed by the ANOVA or Student's t test (p<0.05). It was noticed that the salivary flow rate (0.026 mL/min/100 g ± 0.002) and salivary protein concentration (2.26 mg/mL ± 0.14) of SHR offspring were reduced compared to Wistar normotensive offspring (0.036 mL/min/100 g ± 0.003 and 2.91 mg/mL ± 0.27, respectively), yet there was no alteration in amylase activity (SHR: 242.4 U/mL ± 36.9; Wistar: 163.8 U/mL ± 14.1). Microhardness was lower both in enamel (255.8 KHN ± 2.6) and dentin (59.9 KHN ± 0.8) for the SHR teeth compared to the Wistar teeth (enamel: 328.7 KHN ± 3.3 and dentin: 67.1 KHN ± 1.0). These results suggest that the SHR offspring are more susceptible to development of pathologies impairing oral health, once they presented lesser flow and salivary protein concentration and lower dental mineralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forensic age estimation is an important element of anthropological research, as it produces one of the primary sources of data that researchers use to establish the identity of a person living or the identity of unknown bodily remains. The aim of this study was to determine if the chronology of third molar mineralization could be an accurate indicator of estimated age in a sample Brazilian population. If so, mineralization could determine the probability of an individual being 18 years or older. The study evaluated 407 panoramic radiographs of males and females from the past 5 years in order to assess the mineralization status of the mandibular third molars. The evaluation was carried out using an adaptation of Demirjian's system. The results indicated a strong correlation between chronological age and the mineralization of the mandibular third molars. The results indicated that modern Brazilian generation tends to demonstrate an earlier mandibular third molar mineralization than older Brazilian generation and people of other nationalities. Males reached developmental stages slightly earlier than females, but statistically significant differences between the sex were not found. The probability that an individual with third molar mineralization stage H had reached an age of 18 years or older was 96.8-98.6% for males and females, respectively. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims Eucalyptus plantations cover 20 million hectares on highly weathered soils. Large amounts of nitrogen (N) exported during harvesting lead to concerns about their sustainability. Our goal was to assess the potential of introducing A. mangium trees in highly productive Eucalyptus plantations to enhance soil organic matter stocks and N availability. Methods A randomized block design was set up in a Brazilian Ferralsol soil to assess the effects of mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and mixed plantations (50A:50E)on soil organic matter stocks and net N mineralization. Results A 6-year rotation of mono-specific A. mangium plantations led to carbon (C) and N stocks in the forest floor that were 44% lower and 86% higher than in pure E. grandis stands, respectively. Carbon and N stocks were not significantly different between the three treatments in the 0-15 cm soil layer. Field incubations conducted every 4 weeks for the two last years of the rotation estimated net soil N mineralization in 100A and 100E at 124 and 64 kg ha(-1) yr(-1), respectively. Nitrogen inputs to soil with litterfall were of the same order as net N mineralization. Conclusions Acacia mangium trees largely increased the turnover rate of N in the topsoil. Introducing A. mangium trees might improve mineral N availability in soils where commercial Eucalyptus plantations have been managed for a long time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZUSAMMENFASSUNG Die Tauglichkeit von Hybridmaterialien auf der Basis von Zinkphosphathydrat-Zementen zum Einsatz als korrosionshemmende anorganische Pigmente oder zur prothetischen und konservierenden Knochen- und Zahntherapie wird weltweit empirisch seit den neunziger Jahren intensiv erforscht. In der vorliegenden Arbeit wurden zuerst Referenzproben, d.h. alpha-und beta-Hopeite (Abk. a-,b-ZPT) dank eines hydrothermalen Kristallisationsverfahrens in wässerigem Milieu bei 20°C und 90°C hergestellt. Die Kristallstruktur beider Polymorphe des Zinkphosphattetrahydrats Zn3(PO4)2  4 H2O wurde komplett bestimmt. Einkristall-strukturanalyse zeigt, daß der Hauptunterschied zwischen der alpha-und beta-Form des Zinkphosphattetrahydrats in zwei verschiedenen Anordnungen der Wasserstoffbrücken liegt. Die entsprechenden drei- und zweidimensionalen Anordnungen der Wasserstoffbrücken der a-und b-ZPT induzieren jeweils unterschiedliches thermisches Verhalten beim Aufwärmen. Während die alpha-Form ihr Kristallwasser in zwei definierten Stufen verliert, erzeugt die beta-Form instabile Dehydratationsprodukt. Dieses entspricht zwei unabhängigen, aber nebeneinander ablaufenden Dehydratationsmechanismen: (i) bei niedrigen Heizraten einen zweidimensionalen Johnson-Mehl-Avrami (JMA) Mechanismus auf der (011) Ebene, der einerseits bevorzugt an Kristallkanten stattfindet und anderseits von existierenden Kristalldefekten auf Oberflächen gesteuert wird; (ii) bei hohen Heizraten einem zweidimensionalen Diffusionsmechanismus (D2), der zuerst auf der (101) Ebene und dann auf der (110) Ebene erfolgt. Durch die Betrachtung der ZPT Dehydratation als irreversibele heterogene Festkörperstufenreaktion wurde dank eines „ähnlichen Endprodukt“-Protokolls das Dehydratationsphasendiagramm aufgestellt. Es beschreibt die möglichen Zusammenhänge zwischen den verschiedenen Hydratationszuständen und weist auf die Existenz eines Übergangszustandes um 170°C (d.h. Reaktion b-ZPT  a-ZPT) hin. Daneben wurde auch ein gezieltes chemisches Ätzverfahren mit verdünnten H3PO4- und NH3 Lösungen angewendet, um die ersten Stufe des Herauslösens von Zinkphosphat genau zu untersuchen. Allerdings zeigen alpha- und beta-Hopeite charakteristische hexagonale und kubische Ätzgruben, die sich unter kristallographischer Kontrolle verbreitern. Eine zuverlässige Beschreibung der Oberfächenchemie und Topologie konnte nur durch AFM und FFM Experimente erfolgen. Gleichzeitig konnte in dieser Weise die Oberflächendefektdichte und-verteilung und die Volumenauflösungsrate von a-ZPT und b-ZPT bestimmt werden. Auf einem zweiten Weg wurde eine innovative Strategie zur Herstellung von basischen Zinkphosphatpigmenten erster und zweiter Generation (d.h. NaZnPO4  1H2O und Na2ZnPO4(OH)  2H2O) mit dem Einsatz von einerseits oberflächenmodifizierten Polystyrolatices (z.B. produziert durch ein Miniemulsionspolymerisationsverfahren) und anderseits von Dendrimeren auf der Basis von Polyamidoamid (PAMAM) beschritten. Die erhaltene Zeolithstruktur (ZPO) hat in Abhängigkeit von steigendem Natrium und Wassergehalt unterschiedliche kontrollierte Morphologie: hexagonal, würfelförmig, herzförmig, sechsarmige Sterne, lanzettenförmige Dendrite, usw. Zur quantitativen Evaluierung des Polymereinbaus in der Kristallstruktur wurden carboxylierte fluoreszenzmarkierte Latices eingesetzt. Es zeigt sich, daß Polymeradditive nicht nur das Wachstum bis zu 8 µm.min-1 reduzierten. Trotzdem scheint es auch als starker Nukleationsbeschleuniger zu wirken. Dank der Koordinationschemie (d.h. Bildung eines sechszentrigen Komplexes L-COO-Zn-PO4*H2O mit Ligandenaustausch) konnten zwei einfache Mechanismen zur Wirkung von Latexpartikeln bei der ZPO Kristallisation aufgezeigt werden: (i) ein Intrakorona- und (ii) ein Extrakorona-Keimbildungsmechanismus. Weiterhin wurde die Effizienz eines Kurzzeit- und Langzeitkorrosionschutzes durch maßgeschneiderte ZPO/ZPT Pigmente und kontrollierte Freisetzung von Phosphationen in zwei Näherungen des Auslösungsgleichgewichts abgeschätzt: (i) durch eine Auswaschungs-methode (thermodynamischer Prozess) und (ii) durch eine pH-Impulsmethode (kinetischer Prozess. Besonders deutlich wird der Ausflösungs-Fällungsmechanismus (d.h. der Metamorphismus). Die wesentliche Rolle den Natriumionen bei der Korrosionshemmung wird durch ein passendes zusammensetzungsabhängiges Auflösungsmodell (ZAAM) beschrieben, das mit dem Befund des Salzsprühteste und der Feuchtigkeitskammertests konsistent ist. Schließlich zeigt diese Arbeit das herausragende Potential funktionalisierter Latices (Polymer) bei der kontrollierten Mineralisation zur Herstellung maßgeschneiderter Zinkphosphat Materialien. Solche Hybridmaterialien werden dringend in der Entwicklung umweltfreundlicher Korrosionsschutzpigmente sowie in der Dentalmedizin benötigt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polystyrene latex particles modified at the surface with different hydrophilic functional groups were prepared by miniemulsion polymerization and applied to control the crystallization of zinc oxide in aqueous medium. The effects of both latex structure and concentration on the crystal growth, morphology, crystalline structure, and properties of the resulting zinc oxide were analyzed. Depending on the latex additive used, micro- and submicrosized crystals with a broad variety of morphologies were obtained. Among the studied latexes, the carboxyl-derived particles were shown to be a convenient system for further quantitative investigations. In this case, as the additive concentration increases, the aspect ratio of the crystals decreases systematically. Latex particles are assumed to adsorb preferentially onto the fast growing {001} faces of ZnO, interacting with the growth centers and reducing the growth rate in [001]. When zinc oxide is precipitated in the presence of latex, the polymer particles become incorporated into the growing crystals and polymer–inorganic hybrid materials are obtained. These materials are composed of an inorganic and largely undisturbed crystalline matrix in which organic latex particles are embedded. Increasing amounts of latex become incorporated into the growing crystals at increasing overall concentration in the crystallizing system. Photoluminescence (PL) spectra were measured to obtain information on defect centers. Emission spectra of all samples showed a narrow UV peak and a broad band in the green-yellow spectral region. The former emission is attributed to exciton recombination, whereas the latter seems to be related with deep-level donors. Latex appears to be a quencher of the visible emission of zinc oxide. Thus, compared to pure zincite, ZnO–latex hybrid materials show a significantly lower PL intensity in the visible range of the spectrum. Under continuous photoexcitation, a noticeable dynamic behavior of the PL is observed, which can be related to a photodesorption of adsorbed oxygen. These surface-adsorbed oxygen species seem to play a crucial role for the optical properties of the materials and may mediate the tunneling of electrons from the conduction band to preexisting deep-level traps, probably related to intrinsic defects (oxygen vacancies or interstitial zinc). The polymer particles can block the sites where oxygen adsorbs, and the disappearance of the “electron-shuttle” species leads to the observed quenching of the visible emission. Electron paramagnetic resonance (EPR) provided additional information about crystal defects with unpaired electrons. Spectra of all samples exhibit a single signal at g ≈ 1.96, typical for shallow donors. Contrary to the results of other authors, no correlation was possible between the EPR signal and the visible range of PL spectra, which suggests that centers responsible for the visible emission and the EPR signal are different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al fine di migliorare le tecniche di coltura cellulare in vitro, sistemi a bioreattore sono sempre maggiormente utilizzati, e.g. ingegnerizzazione del tessuto osseo. Spinner Flasks, bioreattori rotanti e sistemi a perfusione di flusso sono oggi utilizzati e ogni sistema ha vantaggi e svantaggi. Questo lavoro descrive lo sviluppo di un semplice bioreattore a perfusione ed i risultati della metodologia di valutazione impiegata, basata su analisi μCT a raggi-X e tecniche di modellizzazione 3D. Un semplice bioreattore con generatore di flusso ad elica è stato progettato e costruito con l'obiettivo di migliorare la differenziazione di cellule staminali mesenchimali, provenienti da embrioni umani (HES-MP); le cellule sono state seminate su scaffold porosi di titanio che garantiscono una migliore adesione della matrice mineralizzata. Attraverso un microcontrollore e un'interfaccia grafica, il bioreattore genera tre tipi di flusso: in avanti (senso orario), indietro (senso antiorario) e una modalità a impulsi (avanti e indietro). Un semplice modello è stato realizzato per stimare la pressione generata dal flusso negli scaffolds (3•10-2 Pa). Sono stati comparati tre scaffolds in coltura statica e tre all’interno del bioreattore. Questi sono stati incubati per 21 giorni, fissati in paraformaldehyde (4% w/v) e sono stati soggetti ad acquisizione attraverso μCT a raggi-X. Le immagini ottenute sono state poi elaborate mediante un software di imaging 3D; è stato effettuato un sezionamento “virtuale” degli scaffolds, al fine di ottenere la distribuzione del gradiente dei valori di grigio di campioni estratti dalla superficie e dall’interno di essi. Tale distribuzione serve per distinguere le varie componenti presenti nelle immagini; in questo caso gli scaffolds dall’ipotetica matrice cellulare. I risultati mostrano che sia sulla superficie che internamente agli scaffolds, mantenuti nel bioreattore, è presente una maggiore densità dei gradienti dei valori di grigio ciò suggerisce un migliore deposito della matrice mineralizzata. Gli insegnamenti provenienti dalla realizzazione di questo bioreattore saranno utilizzati per progettare una nuova versione che renderà possibile l’analisi di più di 20 scaffolds contemporaneamente, permettendo un’ulteriore analisi della qualità della differenziazione usando metodologie molecolari ed istochimiche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of soil freezing on nitrogen (N) mineralization have been the subject of increased attention in the ecological literature, though fewer studies have examined N mineralization responses to successive mild freezing, severe freezing and cyclic freeze–thaw events. Even less is known about relationships of responses to soil N status. This study measured soil N mineralization and nitrification in the field along an experimental N gradient in a grassland of northern China during the dormant season (October 2005–April 2006), a period in which freezing naturally occurs. Net N mineralization exhibited great temporal variability, with nitrification being the predominant N transformation process. Soil microbial biomass C and N and extractable NH4 + pools declined by 40, 52, and 56%, respectively, in April 2006, compared with their initial concentrations in October 2005; soil NO3– pools increased by 84%. Temporal patterns of N mineralization were correlated with soil microbial biomass C and N. N mineralization and nitrification increased linearly with added N. Microbial biomass C in treated soils increased by 10% relative to controls, whereas microbial N declined by 9%. Results further suggest that freezing events greatly alter soil N dynamics in the dormant season at this site, with considerable available N accumulating during this period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A derivative (EMD) of enamel matrix proteins (EMPs) is used for periodontal regeneration because EMPs are believed to induce the formation of acellular extrinsic fiber cementum (AEFC). Other reports, however, indicate that EMPs have osteogenic potential. The aim of this study was to characterize the nature of the tissue that forms on the root surface following application of EMD. Ten human teeth affected by periodontitis and scheduled for extraction were treated with EMD. Four to six weeks later, they were extracted and processed for analysis by light microscopy and transmission electron microscopy. Immunocytochemistry with antibodies against bone sialoprotein (BSP) and osteopontin (OPN) was performed to determine the mineralization pattern. The newly formed tissues on the root were thick and contained embedded cells. Small mineralization foci were regularly seen, and large organic matrix patches were occasionally seen, but a distinct mineralization front was lacking. While labeling for BSP was always associated with small mineralization foci and large matrix patches, OPN labeling was seen inconsistently. It is concluded that tissues resembling either cellular intrinsic fiber cementum or a type of bone were observed. The mineralization pattern mostly resembled that found in bone, except for a few areas that exhibited a hitherto undescribed mineralization pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bonanza mine of the Emery mining district in Powell County is on the largest veins in the area, and is developed to a depth of 680 feet by an incline shaft following the dip of the structure. Sulfide ores carrying gold and silver values are mined throughout the area which is easily accessible by road from Deerlodge, Montana, ten miles west of the district.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study was to develop an experimental model that allows to elude the potential role of the preexisting graft microvasculature for vascularization and mineralization of osteochondral grafts. ANIMALS AND METHODS: For that purpose, the II-IV metatarsals of fetal DDY-mice known to be nonvascularized at day 16 of gestation (M16) but vascularized at day 18 (M18) were freshly transplanted into dorsal skin fold chambers of adult DDY mice. Using intravital microscopy angiogenesis, leukocyte-endothelium interaction and mineralization were assessed for 12 days. RESULTS: Angiogenesis occurred at 32 hours in M18, but not before 57 hours in M16 (p = 0.002), with perfusion of these vessels at 42 hours (p = 0.005) and 65 hours (p = 0.1), respectively. Vessels reached a density three times as high as that of the recipient site at day 6, remaining constant until day 12 in M18, whereas in M16 vascular density increased from day 6 and reached that of M18 at day 12 (p = 0.04). Leukocyte-endothelium interaction showed sticker counts elevated by a factor of 4-5 in M18 as compared to M16. Mineralization of osteochondral grafts did not differ between M16 and M18, which significantly increased in both groups throughout the observation period. INTERPRETATION: We propose the faster kinetics in the angiogenic response to M18 and the elevated counts of sticking leukocytes to rest on the potential of establishing end-to-end anastomoses (inosculation) of the vascularized graft with recipient vessels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dicalcium phosphate dihydrate (brushite) and octacalcium phosphate (OCP) crystals are precursors of hydroxyapatite (HAp) for tooth enamel, dentine, and bones formation in living organisms. Here, we introduce a new method for biomimicking brushite and OCP in starch using single and double diffusion techniques. Brushite and OCP crystals were grown by precipitation in starch after gelation. The obtained materials were analyzed by infrared spectroscopy (IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and confocal laser scanning microscopy (CLSM). IR spectra demonstrate starch inclusion by peak shifts in the 2900–3500 cm–1 region. SEM showed two different morphologies: plate-shaped and needle-like crystals. Calcium phosphate/starch aggregates bear strong resemblance to prismatic brushite kidney stones. This may open up a clue to understand the mechanism of kidney stone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on litter mass and litterfall data, decomposition rates for leaves were found to be fast (k = 3.3) and the turnover times short (3.6 mo) on the low-nutrient sandy soils of Korup. Leaf litter of four ectomycorrhizal tree species (Berlinia bracteosa, Didelotia africana, Microberlinia bisulcata and Tetraberlinia bifoliolata) and of three non-ectomycorrhizal species (Cola verticillata, Oubanguia alata and Strephonema pseudocola) from Korup were left to decompose in 2-mm mesh bags on the forest floor in three plots of each of two forest types forest of low (LEM) and high (HEM) abundance of ectomycorrhizal (caesalp) trees. The litter of the ectomycorrhizal species decayed at a significantly slower rate than that of the non-ectomycorrhizal species, although the former were richer in P and N concentrations of the start. Disappearance rates of the litter layer showed a similar trend. Ectomycorrhizal species immobilized less N, but mineralized more P, than non-ectomycorrhizal species. Differences between species groups in K, Mg and Ca mineralization were negligible. Effect of forest type was clear only for Mg: mineralization of Mg was faster in the HEM than LEM plots, a pattern repeated across all species. This difference was attributed to a much more prolific fine root mat in the HEM than LEM forest. The relatively fast release of P from the litter of the ectomycorrhizal species suggests that the mat must allow an efficient uptake to maintain P in the forest ecosystem.