999 resultados para Mineral trioxide aggregate (MTA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to compare the in vitro cytotoxicity of white mineral trioxide aggregate (MTA), MTA Fillapex® and Portland cement (PC) on human cultured periodontal ligament fibroblasts. Periodontal ligament fibroblast culture was established and the cells were used for cytotoxic tests after the fourth passage. Cell density was set at 1.25 X10 4 cells/well in 96-well plates. Endodontic material extracts were prepared by placing sealer/cement specimens (5X3mm) in 1mL of culture medium for 72 h. The extracts were then serially two-fold diluted and inserted into the cell-seeded wells for 24, 48 and 72 h. MTT assay was employed for analysis of cell viability. Cell supernatants were tested for nitric oxide using the Griess reagent system. MTA presented cytotoxic effect in undiluted extracts at 24 and 72 h. MTA Fillapex® presented the highest cytotoxic levels with important cell viability reduction for pure extracts and at ½ and ¼ dilutions. In this study, PC did not induce alterations in fibroblast viability. Nitric oxide was detected in extract-treated cell supernatants and also in the extracts only, suggesting presence of nitrite in the soluble content of the tested materials. In the present study, MTA Fillapex displayed the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluated the progression of osteogenic cell cultures exposed to a novel calcium aluminate cement (CAC+) in comparison with the gold standard mineral trioxide aggregate (MTA). Cells were enzimatically isolated from newborn rat calvarial bone, plated on glass coverslips containing either CAC+ or a control MTA samples in the center, and grown under standard osteogenic conditions. Over the 10-day culture period, roundening of sample edges was clearly noticed only for MTA group. Although both cements supported osteogenic cell adhesion, spreading, and proliferation, CAC+-exposed cultures showed significantly higher values in terms of total cell number at days 3 and 7, and total protein content and alkaline phosphatase activity at day 10. The present in vitro results indicate that the exposure to CAC+ supports a higher differentiation of osteogenic cells compared with the ones exposed to MTA. Further experimental studies should consider CAC+ as a potential alternative to MTA when the repair of mineralized tissues is one of the desired outcomes in endodontic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulp repair is a complex process whose mechanisms are not yet fully understood. The first immune cells to reach the damaged pulp are neutrophils that play an important role in releasing cytokines and in phagocytosis. The objective of this study was to analyze the effect of different pulp-capping materials on the secretion of interleukin-1 beta (IL-1β) and interleukin-8 (IL-8) by migrating human neutrophils. Neutrophils were obtained from the blood of three healthy donors. The experimental groups were calcium hydroxide [Ca(OH)2], an adhesive system (Single Bond), and mineral trioxide aggregate (MTA). Untreated cells were used as control. Transwell chambers were used in performing the assays to mimic an in vivo situation of neutrophil chemotaxis. The pulp-capping materials were placed in the lower chamber and the human neutrophils, in the upper chamber. The cells were counted and the culture medium was assayed using ELISA kits for detecting and quantifying IL-1β and IL8. The data were compared by ANOVA followed by Tukey's test (p < 0.05). The secretion of IL-8 was significantly higher in all groups in comparison to the control group (p < 0.05). The adhesive system group showed higher IL-8 than the MTA group (p < 0.05). The secretion of IL-1β was significantly greater only in the MTA group (p < 0.001). It was concluded that only MTA is able to improve the secretion of IL-1β, and all materials tested increased IL-8 secretion. These results combined with all the other biological advantages of MTA indicate that it could be considered the material of choice for dental pulp capping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The aim of this study was to evaluate the pH, calcium release, setting time, and solubility of two commercially available mineral trioxide aggregate (MTA) cements (white MTA Angelus and MTA Bio), and of three experimental cements (light-cured MTA, Portland cement with 20% bismuth oxide and 5% calcium sulfate, and an epoxy resin-based cement). Study design. For evaluation of pH and calcium ion release, polyethylene tubes with 1.0 mm internal diameter and 10.0 mm length were filled with the cements and immediately immersed in flasks containing 10 mL deionized water. After 3, 24, 72, and 168 hours, the tubes were removed and the water from the previous container was measured for its pH and calcium content with a pH meter and an atomic absorption spectrophotometer. For analysis of the setting time, Gilmore needles weighing 100 g and 456.5 g were used, in accordance with the American Society for Testing and Materials specification no. C266-03. Solubility of each cement was also tested. Results. All the cements were alkaline and released calcium ions, with a declining trend over time. After 3 hours, Portland cement + bismuth oxide and MTA Bio had the highest pH and light-cured MTA the lowest. After 1 week, MTA Bio had the highest pH and light-cured MTA and epoxy resin-based cement the lowest. Regarding calcium ion release, after 3 hours, Portland cement + bismuth oxide showed the highest release. After 1 week, MTA Bio had the highest. Epoxy resin-based cement and light-cured MTA had the lowest calcium release in all evaluation periods. Regarding setting times, white MTA Angelus and MTA Bio had the shortest, Portland cement + bismuth oxide had an intermediate setting time, and the epoxy resin-based cement had the longest. The materials that showed the lowest solubility values were the epoxy resin-based cement, Portland cement + bismuth oxide, and light-cured MTA. The highest solubility values were presented in white MTA Angelus and MTA Bio. Conclusions. The white MTA Angelus and MTA Bio had the shortest setting times, higher pH and calcium ion release, and the highest solubility. In contrast, the epoxy resin-based cement and light-cured MTA showed lower values of solubility, pH, and calcium ion release. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 250-256)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Aim To evaluate by 3D profilometry and scanning electron microscopy (SEM), the marginal adaptation of mineral trioxide aggregate (MTA) and Sealer 26 placed in root-end cavities with direct vision or under an optical microscope. Methodology The root ends of 52 root filled canine teeth were filled with MTA or Sealer 26 under direct vision or optical microscope (n = 13). In each group, eight specimens were analysed by profilometry for measurement of the area and depth of gaps. In the other five specimens, gap area was measured using SEM to verify marginal adaptation and surface characteristic. Data were analysed by parametric (anova and Tukey) and non-parametric (Kruskal-Wallis and Dunn) tests. Results The assessment of the adaptation of both materials to dentine was not influenced by the mode of visualization, which was confirmed by both profilometry and SEM observations. The voids measured with profilometry for Sealer 26 under direct vision were significantly wider and deeper than those for MTA under direct vision (P < 0.05). In SEM, significantly larger gap areas were observed with Sealer 26 (P < 0.05). Conclusion Root-end cavities filled with MTA had smaller gaps and better marginal adaptation than Sealer 26.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Hydroxyl (OH(-)) and calcium (Ca(++)) ion release was evaluated in six materials: G1) Sealer 26, G2) White mineral trioxide aggregate (MTA), G3) Epiphany, G4) Epiphany + 10% calcium hydroxide (CH), G5) Epiphany + 20% CH, and G6) zinc oxide and eugenol. Material and Methods: Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. Results: G1, G2, G4, and G5 had the highest pH until 14 days (p < 0.05). G1 presented the highest Ca(++) release until 6 h, and G4 and G5, from 12 h through 14 days. Ca(++) release was greater for G1 and G2 at 28 days. G6 released the least Ca(++). Conclusions: MTA, Sealer 26, Epiphany, and Epiphany + CH release OH-and Ca(++) ions. Epiphany + CH may be an alternative as retrofilling material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The aim of this study was to evaluate the pH, calcium release, setting time, and solubility of two commercially available mineral trioxide aggregate (MTA) cements (white MTA Angelus and MTA Bio), and of three experimental cements (light-cured MTA, Portland cement with 20% bismuth oxide and 5% calcium sulfate, and an epoxy resin-based cement).Study design. For evaluation of pH and calcium ion release, polyethylene tubes with 1.0 mm internal diameter and 10.0 mm length were filled with the cements and immediately immersed in flasks containing 10 mL deionized water. After 3, 24, 72, and 168 hours, the tubes were removed and the water from the previous container was measured for its pH and calcium content with a pH meter and an atomic absorption spectrophotometer. For analysis of the setting time, Gilmore needles weighing 100 g and 456.5 g were used, in accordance with the American Society for Testing and Materials specification no. C266-03. Solubility of each cement was also tested.Results. All the cements were alkaline and released calcium ions, with a declining trend over time. After 3 hours, Portland cement + bismuth oxide and MTA Bio had the highest pH and light-cured MTA the lowest. After 1 week, MTA Bio had the highest pH and light-cured MTA and epoxy resin-based cement the lowest. Regarding calcium ion release, after 3 hours, Portland cement + bismuth oxide showed the highest release. After 1 week, MTA Bio had the highest. Epoxy resin-based cement and light-cured MTA had the lowest calcium release in all evaluation periods. Regarding setting times, white MTA Angelus and MTA Bio had the shortest, Portland cement + bismuth oxide had an intermediate setting time, and the epoxy resin-based cement had the longest. The materials that showed the lowest solubility values were the epoxy resin-based cement, Portland cement + bismuth oxide, and light-cured MTA. The highest solubility values were presented in white MTA Angelus and MTA Bio.Conclusions. The white MTA Angelus and MTA Bio had the shortest setting times, higher pH and calcium ion release, and the highest solubility. In contrast, the epoxy resin-based cement and light-cured MTA showed lower values of solubility, pH, and calcium ion release. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 250-256)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate the sealing ability of castor oil polymer (COP), mineral trioxide aggregate (MTA) and glass ionomer cement (GIC) as root-end filling materials. Forty-five single-rooted human teeth were cleaned and prepared using a step-back technique. The apical third of each root was resected perpendicularly to the long axis direction. All teeth were obturated with gutta-percha and an endodontic sealer. After, a root-end cavity with 1.25-mm depth was prepared using a diamond bur. The specimens were randomly divided into three experimental groups (n = 15), according to the root-end filling material used: G1) COP; G2) MTA; G3) GIC. The external surfaces of the specimens were covered with epoxy adhesive, except the root-end filling. The teeth were immersed in rhodamine B dye for 24 hours. Then, the roots were sectioned longitudinally and the linear dye penetration at the dentin/material interface was determined using a stereomicroscope. ANOVA and Tukey's tests were used to compare the three groups. The G1 group (COP) presented smaller dye penetration, statistically different than the G2 (MTA) and G3 (GIC) groups (p < 0.05). No statistically significant difference in microleakage was observed between G2 and G3 groups (p > 0.05). The results of this study indicate that the COP presented efficient sealing ability when used as a root-end filling material showing results significantly better than MTA and GIC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulp capping is a procedure that comprises adequate protection of the pulp tissue exposed to the oral environment, aiming at the preservation of its vitality and functions. This study evaluated the response of the dental pulps of dog teeth to capping with mineral trioxide aggregate (MTA) or calcium hydroxide P.A. For that purpose, 37 teeth were divided into two groups, according to the capping material employed. Two dogs were anesthetized and, after placement of a rubber dam, their pulps were exposed in a standardized manner and protected with the experimental capping materials. The cavities were then sealed with resin-modified glass ionomer cement and restored with composite resin. After sixty days, the animals were killed and the specimens were processed in order to be analyzed with optic microscopy. It was observed that MTA presented a higher success rate compared to calcium hydroxide, presenting a lower occurrence of infection and pulp necrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of mineral trioxide aggregate (MTA), Sealapex, and a combination of Sealapex and MTA (Sealapex Plus) on the reaction of subcutaneous connective tissue of rats, and on cell viability and cytokine production in mouse fibroblasts. The tissue reaction was carried out with dentin tubes containing the materials implanted in the dorsal connective tissue of rats. The histological analysis was performed after 7 and 30 days. Millipore culture plate inserts with polyethylene tubes filled with materials were placed into 24-well cell culture plates with mouse fibroblasts to evaluate the cell viability by MTT assay. ELISA assays were also performed after 24 h of exposure of the mouse fibroblasts to set material disks. Histopathologic examination showed Von Kossa-positive granules that were birefringent to polarized light for all the studied materials at the tube openings. No material inhibited the cell viability in the in vitro test. It was detected IL-6 production in all root-end filling materials. MTA and Sealapex Plus induced a slight raise of mean levels of IL-1β. The results suggest that Sealapex Plus is biocompatible and stimulates the mineralization of the tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this ex vivo study was to evaluate, by scanning electron microscopy (SEM), the presence of gaps at the interface between filling material and three root-end filling materials. Thirty human upper molars disto-buccal roots were instrumented and filled with gutta-percha and eugenol-based sealer. The apicoectomy was performed 2mm from the apex and retrograde cavities were prepared with ultrasonic points (3mm in deep). The samples were divided into three experimental groups (n=10): Group Iwhite mineral trioxide aggregate (MTA); Group IISuper EBA; and Group IIIPortland cement. The root-end filling materials were inserted into the retocavities using a MTA carrier. After 48h, the roots were transversally sectioned in order to obtain the apical 5mm. Next, each specimen was prepared longitudinally with crescent granulation of abrasives water-wet sandpapers in order to expose the filling and root-end filling materials. Then, the specimens were subjected to slow dehydration with silica gel, mounted onto specific stubs and coated with paladium coverage for SEM analysis of the interface between filling and root-end filling materials. The percentage of gaps at the interfacial area was calculated by using Image Tool 3.0 software. Super EBA presented the higher percentage of gaps (1.5 +/- 0.67%), whereas MTA presented the lowest values (0.33 +/- 0.20%; p=0.0004). Despite the statistical differences observed between Super EBA and MTA, all the root-end filling materials presented great adaptation to the filling material, presenting small amount of gaps. SCANNING 36:252-257, 2014. (c) 2013 Wiley Periodicals, Inc.