989 resultados para Microwave-hydrothermal methods


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three methods for intercalibrating humidity sounding channels are compared to assess their merits and demerits. The methods use the following: (1) natural targets (Antarctica and tropical oceans), (2) zonal average brightness temperatures, and (3) simultaneous nadir overpasses (SNOs). Advanced Microwave Sounding Unit-B instruments onboard the polar-orbiting NOAA 15 and NOAA 16 satellites are used as examples. Antarctica is shown to be useful for identifying some of the instrument problems but less promising for intercalibrating humidity sounders due to the large diurnal variations there. Owing to smaller diurnal cycles over tropical oceans, these are found to be a good target for estimating intersatellite biases. Estimated biases are more resistant to diurnal differences when data from ascending and descending passes are combined. Biases estimated from zonal-averaged brightness temperatures show large seasonal and latitude dependence which could have resulted from diurnal cycle aliasing and scene-radiance dependence of the biases. This method may not be the best for channels with significant surface contributions. We have also tested the impact of clouds on the estimated biases and found that it is not significant, at least for tropical ocean estimates. Biases estimated from SNOs are the least influenced by diurnal cycle aliasing and cloud impacts. However, SNOs cover only relatively small part of the dynamic range of observed brightness temperatures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. Objective: The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. Material and methods: Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). Results: The control group showed the best result (156.04 +/- 1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02 +/- 2.25 MPa), group 2 (36.21 +/- 1.20 MPa) and group 4 (6.74 +/- 0.85 MPa). Conclusion: All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One-dimensional nanostructures of KNbO3 have attracted a great interest in the scientific community, mainly because of their promising application as nanoelectromechanical systems (NEMS). However, the synthesis of KNbO3 structures becomes complex due to the natural tendency to form non-stoichiometric potassium niobates. In this context, we report on the crystallization of one-dimensional KNbO3 nanostructures through the reaction between Nb2O5 and KOH under microwave-assisted hydrothermal synthesis (M-H). The use of this synthesis method made possible a very fast synthesis of singlecrystalline powders. Based on SEM, TEM and XRD characterizations, the influence of the synthesis time and the reactants concentration in the structure and morphology of the resultant KNbO3 was established. The conditions that favor the crystallization of nanofingers were determined to be small amounts of Nb2O5 and short reaction times. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are many advantages to using a microwave as a source of heat in hydrothermal reactions. Because it is a quick and homogeneous way to crystallize ceramic powders, it was used in this work for the production of antiferroelectric sodium mobate (NaNbO3) in a cubic-like form and its intermediary phase, disodium diniobate hydrate (Na2Nb2O6 center dot H2O), with a fiber morphology. The syntheses were carried out by treating niobic acid (Nb2O5 center dot nH(2)O) with NaOH. By changing the reaction time and the concentration of the reactants, particles with different structures and different morphologies could be obtained. The structural evolution of the products of this reaction was elucidated on the basis of the arrangement of the NbO6 octahedral units. Conclusive results were obtained with morphological and structural characterizations through XRD, TEM, MEV, and NMR and Raman spectroscopy. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This letter reports the synthesis of CuO urchin-nanostructures by a simple and novel hydrothermal microwave method. The formation and growth of urchin-nanostructures is mainly affected by the addition of polyethylene glycol (PEG). The hierarchical malachite particles are uniform spheres with a diameter of 0.7-1.9 mu m. CuO urchin-nano structures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FEG-SEM) and nitrogen adsorption (BET). The specific surface area of the CuO nanostructured microspheres was about 170.5 m(2)/g. A possible mechanism for the formation of such CuO urchin-nanostructures is proposed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)