967 resultados para Microwave-hydrothermal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we studied the synthesis of BSCCO-2212 superconducting phase associating a quite similar method developed by Pechini with the microwave-assisted hydrothermal method. To study the influence of the microwaves on the properties of BSCCO system, we synthesized two samples by such method. For one sample we used carbonates and for the other one we used nitrates as chemical reagents. We also produced a reference sample just using carbonates by Pechini's method to compare their morphological and superconducting properties. The structural properties of the samples were analyzed by scanning electron microscopy and X-ray diffraction. The Bi-2212 phase is predominant in all samples and despites the nitrates-like sample has a broader distribution of grain size in comparison with the reference sample, its magnetic behaviour is closer to that presented by the reference one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ba1-xCaxTiO3, Ba1-xSrxTiO3 and Sr1-xCaxTiO3 (x = 0, 0.25, 0.50, 0.75 and 1) nanoparticles were synthesized using the microwave-assisted hydrothermal method. Samples were prepared for 40 minutes at 140°C under a pressure of 3 MPa using an adapted domestic microwave oven. The samples were characterized by X-Ray diffraction (XRD), scanning electron microscopy (FE-SEM), and Raman, photoluminescence (PL) and ultraviolet-visible (UV-Vis) spectroscopies. XRD data show that ceramic powders have crystalline phases associated with a short-range structural disorder. This structural disorder is confirmed by Raman spectral bands indicating multi-phonon processes and the presence of defects or impurities. Such defects account for a broad band in the photoluminescence spectrum in the green light (460 nm) region for all samples. Gap energy variation, obtained from UV-Vis spectra, suggest a non-uniform band structure of these titanates in accordance with the PL results. The morphology of each sample is changed with doping and varies from a spherical to cubic appearance for energy minimization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the effect of using different titanium precursors on the synthesis and physical properties of SrTiO3 powders obtained by microwave-assisted hydrothermal method. X-ray diffraction measurements, X-ray absorption near-edge structure (XANES) spectroscopy, field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HRTEM) were carried out to investigate the structural and optical properties of the SrTiO3 spherical and cubelike-shaped particles. The appropriate choice of the titanium precursor allowed the control of morphological and photoluminescence (PL) properties of SrTiO3 compound. The PL emission was more intense in SrTiO3 samples composed of spherelike particles. This behavior was attributed to the existence of a lower amount of defects due to the uniformity of the spherical particles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report herein for the first time a facile synthesis method to obtain SrTi1-xFexO3 nanocubes by means by a microwave-assisted hydrothermal (MAH) method at 140 degrees C. The effect of iron addition on the structural and morphological properties of SrTiO3 was investigated. X-ray diffraction measurements show that all STFO samples present a cubic perovskite structure. X-ray absorption spectroscopy at Fe absorption K-edge measurements revealed that iron ions are in a mixed Fe2+/Fe3+ oxidation state and preferentially occupy the Ti4+-site. UV-visible spectra reveal a reduction in the optical gap (E-gap) of STFO samples as the amount of iron is increased. An analysis of the data obtained by field emission scanning electron microscopy points out that the nanoparticles present a cubic morphology independently of iron content. According to high-resolution transmission electron microscopy results, these nanocubes are formed by a self-assembly process of small primary nanocrystals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ceria (CeO2) plays a vital role in emerging technologies for environmental and energy-related applications. The catalytic efficiency of ceria nanoparticles depends on its morphology. In this study, CeO2 nanoparticles were synthesized by a microwave-assisted hydrothermal method under different synthesis temperatures. The samples were characterized by X-ray diffraction, transmission electron microscopy, Raman scattering spectroscopy, electron paramagnetic resonance spectroscopy and by the Brunauer-Emmett-Teller method. The X-ray diffraction and Raman scattering results indicated that all the synthesized samples had a pure cubic CeO2 structure. Rietveld analysis and Raman scattering also revealed the presence of structural defects due to an associated reduction in the valence of the Ce4+ ions to Ce3+ ions caused by an increasing molar fraction of oxygen vacancies. The morphology of the samples was controlled by varying the synthesis temperature. The TEM images show that samples synthesized at 80 degrees C consisted of spherical particles of about 5 nm, while those synthesized at 120 degrees C presented a mix of spherical and rod-like nanoparticles and the sample synthesized at 160 degrees C consisted of nanorods with 10 nm average diameter and 70 nm length. The microwave-assisted method proved to be highly efficient for the synthesis of CeO2 nanoparticles with different morphologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The exploration of novel synthetic methodologies that control both size and shape of functional nanostructure opens new avenues for the functional application of nanomaterials. Here, we report a new and versatile approach to synthesize SnO2 nanocrystals (rutile-type structure) using microwave-assisted hydrothermal method. Broad peaks in the X-ray diffraction spectra indicate the nanosized nature of the samples which were indexed as a pure cassiterite tetragonal phase. Chemically and physically adsorbed water was estimated by TGA data and FT-Raman spectra to account for a new broad peak around 560 cm(-1) which is related to defective surface modes. In addition, the spherical-like morphology and low dispersed distribution size around 3-5 nm were investigated by HR-TEM and FE-SEM microscopies. Room temperature PL emission presents two broad bands at 438 and 764 nm, indicating the existence of different recombination centers. When the size of the nanospheres decreases, the relative intensity of 513 nm emission increases and the 393 nm one decreases. UV-Visible spectra show substantial changes in the optical absorbance of crystalline SnO2 nanoparticles while the existence of a small tail points out the presence of localized levels inside the forbidden band gap and supplies the necessary condition for the PL emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a facile one-step route to controlled synthesis of colloidal KMgF3 nanocrystals via the thermolysis of metal trifluoroacetate precursors in combined solvents (OA/OM) using microwave irradiation. X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared (FT-IR) spectra, and photoluminescence (PL) spectra were employed to characterize the samples. Only through the variation of the OA/OM ratio, can the phase and shape of nanocrystals be readily controlled, resulting in the formation of well-defined near-spherical nanoparticles, and nanoplates of cubic-phased KMgF3, as well as nanorods of tetragonal-phased MgF2, and a possible mechanism has been proposed to elucidate this effect. Furthermore, all these samples in this system can be well dispersed in nonpolar solvents such as cyclohexane to form stable and clear colloidal solutions, due to the successful coating of organic surfactants (OA/OM) on the nanocrystal surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Europium doped hydroxyapatite (Eu:HAp) nanosized particles with multiform morphologies have been successfully prepared via a simple microemulsion-mediated process assisted with microwave heating. The physicochemical properties of the samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra, and the kinetic decays, respectively. The results reveal that the obtained Eu:HAp particles are well assigned to the hexagonal lattice structure of the hydroxyapatite phase. Additionally, it is found that samples exhibit uniform morphologies which can be controlled by altering the pH values. Furthermore, the samples show the characteristic D-5(0)-F-7(1-4) emission lines of Eu3+ excited by UV radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zeolite membranes with high permeance and separation factors are highly desirable for practical applications. Although, in the past, very good separation factors have been obtained, it has proved difficult to achieve a high permeance. Ken a comparative study of microwave versus conventional heating in the hydrothermal synthesis of NaA zeolite membranes is made. It is demonstrated that membranes prepared by microwave heating have not only a higher permeance but also a considerably shorter synthesis time. These observations are rationalized by examining the mechanism of membrane formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of NaA zeolite membrane on a porous alpha -Al2O3 support by microwave heating (MH) was investigated. The formation of a NaA zeolite membrane was drastically promoted by MH. The synthesis time was reduced from 3 h for conventional heating (CH) to 15 min for MH. Surface seeding cannot only promote the formation of NaA zeolite on the support, but also inhibit the transformation of NaA zeolite into other types of zeolites. The thickness of the NaA zeolite membrane synthesized by MH was about 4 mum, thinner than that of NaA zeolite membrane synthesized by CH. The permeance of NaA zeolite membrane synthesized by MH was four times higher than that of the NaA zeolite membrane synthesized by CH, while their permselectivities were comparable. Multi-stage synthesis resulted in the transformation of NaA zeolite into other types of zeolites, and the perfection of the as-synthesized membrane decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reported the NaA zeolite membranes with high permeance synthesized with microwave heating method under different conditions: (1) on a macroporous substrate in gel, (11) on a mesoporous/macroporous (top-mesoporous-layer-modified macroporous) substrate in gel, and (111) on a mesoporous/macroporous substrate in sol. In general, the H-2 permeance of the NaA membranes by microwave heating in gel was usually at the level of 10(-6) mol s(-1) m(-2) Pa-1, much higher than that by the conventional hydrothermal synthesis. At similar H-2/C3H8 permselectivity. On the substrate modified mesoporous top layer, the H-2 permeance of the NaA membranes by microwave heating in gel or sol was further enhanced, while maintaining comparable H-2/C3H8 permselectivity, due to the prevention of penetration of the reagent into the pores of the macroporous substrate. Meanwhile, the synthesis took less time in sol than in gel on the mesoporous/macroporous substrate. The NaA membranes synthesized in sol had larger permeance than those in gel and underwent transformation in shorter time. The permeation of C3H8 suggested that there existed unwanted intercrystalline pores or defects in the membranes. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of FDU-1 silica with large cage-like mesopores prepared with a new triblock copolymer Vorasurf 504 (R) (Eo)(38)(BO)(46)(EO)(38) was developed. The hydrothermal treatment temperature, the dissolution of the copolymer in ethanol, the HCl concentration, the solution stirring time and the hydrothermal treatment time in a microwave oven were evaluated with factorial design procedures. The dissolution in ethanol is important to produce a material with better porous morphology. Increases in the hydrothermal temperature (100 degrees C) and HCl concentration (2 M) improved structural, textural and chemical properties of the cubic ordered mesoporous silica. Also, longer times induced better physical and chemical property characteristics. (C) 2010 Elsevier Inc. All rights reserved.