374 resultados para Microstructures
Resumo:
The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
Resumo:
This paper reports the fabrication process and characterization of a flexible pressure sensor based on polydimethylsiloxane (PDMS) and multi-walled carbon nanotubes (CNT-PDMS). The proposed approach relies on patterned CNT-PDMS nanocomposite strain gauges fabricated with SU-8 microstructures (with the micropatterns) in a low‑cost and simple fabrication process. This nanocomposite polymer is mounted over a PDMS membrane, which, in turn, lies on top of a PDMS diaphragm like structure. This configuration enables the PDMS membrane to bend when pressure is applied, thereby affecting the nanocomposite strain gauges, effectively changing their electrical resistance. Carbon nanotubes have several advantages such as excellent mechanical properties, high electrical conductivity and thermal stability. Furthermore, the measurement range of the proposed sensor can be adapted according to the application by varying the CNTs content and geometry of microstructure. In addition, the sensor’s biocompatibility, low cost and simple fabrication makes it very appealing for biomechanical strain sensing. The sensor’s sensitivity was about 0.073%ΔR/mmHg.
Resumo:
Mo-Si-B alloys, Real microstructures, Voronoi structures, Microstructural characterization, Modelling and finite element simulations, Effective material properties, Damage and Crack growth, tensile strength, fracture toughness
Resumo:
The geodynamic forces acting in the Earth's interior manifest themselves in a variety of ways. Volcanoes are amongst the most impressive examples in this respect, but like with an iceberg, they only represent the tip of a more extensive system hidden underground. This system consists of a source region where melt forms and accumulates, feeder connections in which magma is transported towards the surface, and different reservoirs where it is stored before it eventually erupts to form a volcano. A magma represents a mixture of melt and crystals. The latter can be extracted from the source region, or form anywhere along the path towards their final crystallization place. They will retain information of the overall plumbing system. The host rocks of an intrusion, in contrast, provide information at the emplacement level. They record the effects of thermal and mechanical forces imposed by the magma. For a better understanding of the system, both parts - magmatic and metamorphic petrology - have to be integrated. I will demonstrate in my thesis that information from both is complementary. It is an iterative process, using constraints from one field to better constrain the other. Reading the history of the host rocks is not always straightforward. This is shown in chapter two, where a model for the formation of clustered garnets observed in the contact aureole is proposed. Fragments of garnets, older than the intrusive rocks are overgrown by garnet crystallizing due to the reheating during emplacement of the adjacent pluton. The formation of the clusters is therefore not a single event as generally assumed but the result of a two-stage process, namely the alteration of the old grains and the overgrowth and amalgamation of new garnet rims. This makes an important difference when applying petrological methods such as thermobarometry, geochronology or grain size distributions. The thermal conditions in the aureole are a strong function of the emplacement style of the pluton. therefore it is necessary to understand the pluton before drawing conclusions about its aureole. A study investigating the intrusive rocks by means of field, geochemical, geochronologi- cal and structural methods is presented in chapter three. This provided important information about the assembly of the intrusion, but also new insights on the nature of large, homogeneous plutons and the structure of the plumbing system in general. The incremental nature of the emplacement of the Western Adamello tonalité is documented, and the existence of an intermediate reservoir beneath homogeneous plutons is proposed. In chapter four it is demonstrated that information extracted from the host rock provides further constraints on the emplacement process of the intrusion. The temperatures obtain by combining field observations with phase petrology modeling are used together with thermal models to constrain the magmatic activity in the immediate intrusion. Instead of using the thermal models to control the petrology result, the inverse is done. The model parameters were changed until a match with the aureole temperatures was obtained. It is shown, that only a few combinations give a positive match and that temperature estimates from the aureole can constrain the frequency of ancient magmatic systems. In the fifth chapter, the Anisotropy of Magnetic Susceptibility of intrusive rocks is compared to 3D tomography. The obtained signal is a function of the shape and distribution of ferromagnetic grains, and is often used to infer flow directions of magma. It turns out that the signal is dominated by the shape of the magnetic crystals, and where they form tight clusters, also by their distribution. This is in good agreement with the predictions made in the theoretical and experimental literature. In the sixth chapter arguments for partial melting of host rock carbonates are presented. While at first very surprising, this is to be expected when considering the prior results from the intrusive study and experiments from the literature. Partial melting is documented by compelling microstructures, geochemical and structural data. The necessary conditions are far from extreme and this process might be more frequent than previously thought. The carbonate melt is highly mobile and can move along grain boundaries, infiltrating other rocks and ultimately alter the existing mineral assemblage. Finally, a mineralogical curiosity is presented in chapter seven. The mineral assemblage magne§site and calcite is in apparent equilibrium. It is well known that these two carbonates are not stable together in the system Ca0-Mg0-Fe0-C02. Indeed, magnesite and calcite should react to dolomite during metamorphism. The presented explanation for this '"forbidden" assemblage is, that a calcite melt infiltrated the magnesite bearing rock along grain boundaries and caused the peculiar microstructure. This is supported by isotopie disequilibrium between calcite and magnesite. A further implication of partially molten carbonates is, that the host rock drastically looses its strength so that its physical properties may be comparable to the ones of the intrusive rocks. This contrasting behavior of the host rock may ease the emplacement of the intrusion. We see that the circle closes and the iterative process of better constraining the emplacement could start again. - La Terre est en perpétuel mouvement et les forces tectoniques associées à ces mouvements se manifestent sous différentes formes. Les volcans en sont l'un des exemples les plus impressionnants, mais comme les icebergs, les laves émises en surfaces ne représentent que la pointe d'un vaste système caché dans les profondeurs. Ce système est constitué d'une région source, région où la roche source fond et produit le magma ; ce magma peut s'accumuler dans cette région source ou être transporté à travers différents conduits dans des réservoirs où le magma est stocké. Ce magma peut cristalliser in situ et produire des roches plutoniques ou alors être émis en surface. Un magma représente un mélange entre un liquide et des cristaux. Ces cristaux peuvent être extraits de la source ou se former tout au long du chemin jusqu'à l'endroit final de cristallisation. L'étude de ces cristaux peut ainsi donner des informations sur l'ensemble du système magmatique. Au contraire, les roches encaissantes fournissent des informations sur le niveau d'emplacement de l'intrusion. En effet ces roches enregistrent les effets thermiques et mécaniques imposés par le magma. Pour une meilleure compréhension du système, les deux parties, magmatique et métamorphique, doivent être intégrées. Cette thèse a pour but de montrer que les informations issues de l'étude des roches magmatiques et des roches encaissantes sont complémentaires. C'est un processus itératif qui utilise les contraintes d'un domaine pour améliorer la compréhension de l'autre. Comprendre l'histoire des roches encaissantes n'est pas toujours aisé. Ceci est démontré dans le chapitre deux, où un modèle de formation des grenats observés sous forme d'agrégats dans l'auréole de contact est proposé. Des fragments de grenats plus vieux que les roches intru- sives montrent une zone de surcroissance générée par l'apport thermique produit par la mise en place du pluton adjacent. La formation des agrégats de grenats n'est donc pas le résultat d'un seul événement, comme on le décrit habituellement, mais d'un processus en deux phases, soit l'altération de vieux grains engendrant une fracturation de ces grenats, puis la formation de zone de surcroissance autour de ces différents fragments expliquant la texture en agrégats observée. Cette interprétation en deux phases est importante, car elle engendre des différences notables lorsque l'on applique des méthodes pétrologiques comme la thermobarométrie, la géochronologie ou encore lorsque l'on étudie la distribution relative de la taille des grains. Les conditions thermales dans l'auréole de contact dépendent fortement du mode d'emplacement de l'intrusion et c'est pourquoi il est nécessaire de d'abord comprendre le pluton avant de faire des conclusions sur son auréole de contact. Une étude de terrain des roches intrusives ainsi qu'une étude géochimique, géochronologique et structurale est présente dans le troisième chapitre. Cette étude apporte des informations importantes sur la formation de l'intrusion mais également de nouvelles connaissances sur la nature de grands plutons homogènes et la structure de système magmatique en général. L'emplacement incrémental est mis en évidence et l'existence d'un réservoir intermédiaire en-dessous des plutons homogènes est proposé. Le quatrième chapitre de cette thèse illustre comment utiliser l'information extraite des roches encaissantes pour expliquer la mise en place de l'intrusion. Les températures obtenues par la combinaison des observations de terrain et l'assemblage métamorphique sont utilisées avec des modèles thermiques pour contraindre l'activité magmatique au contact directe de cette auréole. Au lieu d'utiliser le modèle thermique pour vérifier le résultat pétrologique, une approche inverse a été choisie. Les paramètres du modèle ont été changés jusqu'à ce qu'on obtienne une correspondance avec les températures observées dans l'auréole de contact. Ceci montre qu'il y a peu de combinaison qui peuvent expliquer les températures et qu'on peut contraindre la fréquence de l'activité magmatique d'un ancien système magmatique de cette manière. Dans le cinquième chapitre, les processus contrôlant l'anisotropie de la susceptibilité magnétique des roches intrusives sont expliqués à l'aide d'images de la distribution des minéraux dans les roches obtenues par tomographie 3D. Le signal associé à l'anisotropie de la susceptibilité magnétique est une fonction de la forme et de la distribution des grains ferromagnétiques. Ce signal est fréquemment utilisé pour déterminer la direction de mouvement d'un magma. En accord avec d'autres études de la littérature, les résultats montrent que le signal est dominé par la forme des cristaux magnétiques, ainsi que par la distribution des agglomérats de ces minéraux dans la roche. Dans le sixième chapitre, une étude associée à la fusion partielle de carbonates dans les roches encaissantes est présentée. Si la présence de liquides carbonatés dans les auréoles de contact a été proposée sur la base d'expériences de laboratoire, notre étude démontre clairement leur existence dans la nature. La fusion partielle est documentée par des microstructures caractéristiques pour la présence de liquides ainsi que par des données géochimiques et structurales. Les conditions nécessaires sont loin d'être extrêmes et ce processus pourrait être plus fréquent qu'attendu. Les liquides carbonatés sont très mobiles et peuvent circuler le long des limites de grain avant d'infiltrer d'autres roches en produisant une modification de leurs assemblages minéralogiques. Finalement, une curiosité minéralogique est présentée dans le chapitre sept. L'assemblage de minéraux de magnésite et de calcite en équilibre apparent est observé. Il est bien connu que ces deux carbonates ne sont pas stables ensemble dans le système CaO-MgO-FeO-CO.,. En effet, la magnésite et la calcite devraient réagir et produire de la dolomite pendant le métamorphisme. L'explication présentée pour cet assemblage à priori « interdit » est que un liquide carbonaté provenant des roches adjacentes infiltre cette roche et est responsable pour cette microstructure. Une autre implication associée à la présence de carbonates fondus est que la roche encaissante montre une diminution drastique de sa résistance et que les propriétés physiques de cette roche deviennent comparables à celles de la roche intrusive. Cette modification des propriétés rhéologiques des roches encaissantes peut faciliter la mise en place des roches intrusives. Ces différentes études démontrent bien le processus itératif utilisé et l'intérêt d'étudier aussi bien les roches intrusives que les roches encaissantes pour la compréhension des mécanismes de mise en place des magmas au sein de la croûte terrestre.
Resumo:
Estrogens and progesterones are major drivers of breast development but also promote carcinogenesis in this organ. Yet, their respective roles and the mechanisms underlying their action in the human breast are unclear. Receptor activator of nuclear factor κB ligand (RANKL) has been identified as a pivotal paracrine mediator of progesterone function in mouse mammary gland development and mammary carcinogenesis. Whether the factor has the same role in humans is of clinical interest because an inhibitor for RANKL, denosumab, is already used for the treatment of bone disease and might benefit breast cancer patients. We show that progesterone receptor (PR) signaling failed to induce RANKL in PR(+) breast cancer cell lines and in dissociated, cultured breast epithelial cells. In clinical specimens from healthy donors and intact breast tissue microstructures, hormone response was maintained and RANKL expression was under progesterone control, which increased RNA stability. RANKL was sufficient to trigger cell proliferation and was required for progesterone-induced proliferation. The findings were validated in vivo where RANKL protein expression in the breast epithelium correlated with serum progesterone levels and the protein was expressed in a subset of luminal cells that express PR. Thus, important hormonal control mechanisms are conserved across species, making RANKL a potential target in breast cancer treatment and prevention.
Resumo:
We investigated the use of in situ implant formation that incorporates superparamagnetic iron oxide nanoparticles (SPIONs) as a form of minimally invasive treatment of cancer lesions by magnetically induced local hyperthermia. We developed injectable formulations that form gels entrapping magnetic particles into a tumor. We used SPIONs embedded in silica microparticles to favor syringeability and incorporated the highest proportion possible to allow large heating capacities. Hydrogel, single-solvent organogel and cosolvent (low-toxicity hydrophilic solvent) organogel formulations were injected into human cancer tumors xenografted in mice. The thermoreversible hydrogels (poloxamer, chitosan), which accommodated 20% w/v of the magnetic microparticles, proved to be inadequate. Alginate hydrogels, however, incorporated 10% w/v of the magnetic microparticles, and the external gelation led to strong implants localizing to the tumor periphery, whereas internal gelation failed in situ. The organogel formulations, which consisted of precipitating polymers dissolved in single organic solvents, displayed various microstructures. A 8% poly(ethylene-vinyl alcohol) in DMSO containing 40% w/v of magnetic microparticles formed the most suitable implants in terms of tumor casting and heat delivery. Importantly, it is of great clinical interest to develop cosolvent formulations with up to 20% w/v of magnetic microparticles that show reduced toxicity and centered tumor implantation.
Resumo:
Bone substitute materials allowing trans-scaffold migration and in-scaffold survival of human bone-derived cells are mandatory for development of cell-engineered permanent implants to repair bone defects. In this study, we evaluated the influence on human bone-derived cells of the material composition and microstructure of foam scaffolds of calcium aluminate. The scaffolds were prepared using a direct foaming method allowing wide-range tailoring of the microstructure for pore size and pore openings. Human fetal osteoblasts (osteo-progenitors) attached to the scaffolds, migrated across the entire bioceramic depending on the scaffold pore size, colonized, and survived in the porous material for at least 6 weeks. The long-term biocompatibility of the scaffold material for human bone-derived cells was evidenced by in-scaffold determination of cell metabolic activity using a modified MTT assay, a repeated WST-1 assay, and scanning electron microscopy. Finally, we demonstrated that the osteo-progenitors can be covalently bound to the scaffolds using biocompatible click chemistry, thus enhancing the rapid adhesion of the cells to the scaffolds. Therefore, the different microstructures of the foams influenced the migratory potential of the cells, but not cell viability. Scaffolds allow covalent biocompatible chemical binding of the cells to the materials, either localized or widespread integration of the scaffolds for cell-engineered implants.
Resumo:
At the latitude of the Thor-Odin dome (British Columbia) the Columbia River Detachment defines the eastern margin of the Shuswap metamorphic core complex and localizes in a 1 km thick muscovite-bearing quartzite mylonite. We present a combined Ar-40/Ar-39, (micro) structural, and oxygen isotope study of the deformation history in the detachment and evaluate the spatial and temporal relationships between microstructure formation and localization of strain. High-precision Ar-40/Ar-39 geochronology from different levels in the mylonite delineates a pattern of increasingly younger (49.0 to 47.9 Ma) deformation ages in deeper levels of the mylonitic footwall. The correlation of Ar-40/Ar-39 ages with decreasing deformation temperatures (similar to 550 degrees-400 degrees C) in the top 200 m of the mylonite indicates that deformation migrated downward from the contact with the hanging wall. Strain localization was diachronous in progressively deeper levels of the footwall and was likely controlled by fluid-assisted strain hardening due to advective heat removal and contemporaneous reaction weakening due to dissolution-reprecipitation of white mica. The observed constant high-stress microstructures across the entire detachment indicate that flow stress was buffered by the interplay of strain rate and temperature, where high strain rates at elevated temperature produced the same microstructure as lower strain rates under decreasing temperature conditions. The combined data suggest that the complex interplay among temporally nonuniform rates of footwall exhumation, heat advection, and embrittlement by meteoric fluids strongly determines the thermomechanical behavior of extensional detachments.
Resumo:
Synchrotron radiation X-ray tomographic microscopy is a nondestructive method providing ultra-high-resolution 3D digital images of rock microstructures. We describe this method and, to demonstrate its wide applicability, we present 3D images of very different rock types: Berea sandstone, Fontainebleau sandstone, dolomite, calcitic dolomite, and three-phase magmatic glasses. For some samples, full and partial saturation scenarios are considered using oil, water, and air. The rock images precisely reveal the 3D rock microstructure, the pore space morphology, and the interfaces between fluids saturating the same pore. We provide the raw image data sets as online supplementary material, along with laboratory data describing the rock properties. By making these data sets available to other research groups, we aim to stimulate work based on digital rock images of high quality and high resolution. We also discuss and suggest possible applications and research directions that can be pursued on the basis of our data.
Resumo:
The growth history of two populations of snowball garnet from the Lukmanier Pass area (central Swiss Alps) was examined through a detailed analysis of three-dimensional geometry, chemical zoning and crystallographic orientation. The first population, collected in the hinge of a chevron-type fold, shows an apparent rotation of 360 degrees. The first 270 degrees are characterized by spiral-shaped inclusion trails, gradual and concentric Mn zoning and a single crystallographic orientation, whereas in the last 90 degrees, crenulated inclusion trails and secondary Mn maxima centred on distinct crystallographic garnet domains are observed. Microstructural, geochemical and textural data indicate a radical change in growth regime between the two growth sequences. In the first 270 degrees, growth occurred under rotational non-coaxial flow, whereas in the last 90 degrees, garnet grew under a non-rotational shortening regime. The second population, collected in the limb of the same chevron-type fold structure, is characterized by a spiral geometry that does not exceed 270 degrees of apparent rotation. These garnet microstructures do not record any evidence for a modification of the stress field during garnet growth. Concentric Mn zoning as well as a single crystallographic orientation are observed for the entire spiral. Electron backscatter diffraction data indicate that nearly all central domains in the snowball garnet are characterized by one [001] axis oriented (sub-)parallel to the symmetry axis and by another [001] axis oriented (sub-)parallel to the orientation of the internal foliation. These features suggest that the crystallographic orientation across the garnet spiral is not random and that a relation exists among the symmetry axis, the internal foliation and the crystallographic orientation.
Resumo:
Micas are commonly used in Ar-40/Ar-39 thermochronological studies of variably deformed rocks yet the physical basis by which deformation may affect radiogenic argon retention in mica is poorly constrained. This study examines the relationship between deformation and deformation-induced microstructures on radiogenic argon retention in muscovite, A combination of furnace step-heating and high-spatial resolution in situ UV-laser ablation Ar-40/Ar-39 analyses are reported for deformed muscovites sampled from a granitic pegmatite vein within the Siviez-Mischabel Nappe, western Swiss Alps (Penninic domain, Brianconnais unit). The pegmatite forms part of the Variscan (similar to 350 Ma) Alpine basement and exhibits a prominent Alpine S-C fabric including numerous mica `fish' that developed under greenschist facies metamorphic conditions, during the dominant Tertiary Alpine tectonic phase of nappe emplacement. Furnace step-heating of milligram quantities of separated muscovite grains yields an Ar-40/Ar-39 age spectrum with two distinct staircase segments but without any statistical plateau, consistent with a previous study from the same area. A single (3 X 5 mm) muscovite porphyroclast (fish) was investigated by in situ UV-laser ablation. A histogram plot of 170 individual Ar-40/Ar-39 UV-laser ablation ages exhibit a range from 115 to 387 Ma with modes at approximately 340 and 260 Ma. A variogram statistical treatment of the (40)Ad/Ar-39 results reveals ages correlated with two directions; a highly correlated direction at 310 degrees and a lesser correlation at 0 degrees relative to the sense of shearing. Using the highly correlated direction a statistically generated (Kriging method) age contour map of the Ar-40/Ar-39 data reveals a series of elongated contours subparallel to the C-surfaces which where formed during Tertiary nappe emplacement. Similar data distributions and slightly younger apparent ages are recognized in a smaller mica fish. The observed intragrain age variations are interpreted to reflect the partial loss of radiogenic argon during Alpine (similar to 35 Ma) greenschist facies metamorphism. One-dirnensional diffusion modelling results are consistent with the idea that the zones of youngest apparent age represent incipient shear band development within the mica porphyroclasts, thus providing a network of fast diffusion pathways. During Alpine greenschist facies metamorphism the incipient shear bands enhanced the intragrain loss of radiogenic argon. The structurally controlled intragrain age variations observed in this investigation imply that deformation has a direct control on the effective length scale for argon diffusion, which is consistent with the heterogeneous nature of deformation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.
Resumo:
A new approach to the local measurement of residual stress in microstructures is described in this paper. The presented technique takes advantage of the combined milling-imaging features of a focused ion beam (FIB) equipment to scale down the widely known hole drilling method. This method consists of drilling a small hole in a solid with inherent residual stresses and measuring the strains/displacements caused by the local stress release, that takes place around the hole. In the presented case, the displacements caused by the milling are determined by applying digital image correlation (DIC) techniques to high resolution micrographs taken before and after the milling process. The residual stress value is then obtained by fitting the measured displacements to the analytical solution of the displacement fields. The feasibility of this approach has been demonstrated on a micromachined silicon nitride membrane showing that this method has high potential for applications in the field of mechanical characterization of micro/nanoelectromechanical systems.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
Thermal crystallization experiments carried out using calorimetry on several a-Si:H materials with different microstructures are reported. The samples were crystallized during heating ramps at constant heating rates up to 100 K/min. Under these conditions, crystallization takes place above 700 C and progressively deviates from the standard kinetics. In particular, two crystallization processes were detected in conventional a-Si:H, which reveal an enhancement of the crystallization rate. At100 K/min, such enhancement is consistent with a diminution of the crystallization time by a factor of 7. In contrast, no systematic variation of the resulting grain size was observed. Similar behavior was also detected in polymorphous silicon and silicon nanoparticles, thus showing that it is characteristic of a variety of hydrogenated amorphous silicon materials.