975 resultados para Microstructure characterization
Resumo:
Variations on the microstructure development and on the electrical properties of SnO2-based varistors are discussed on the basis of the oxygen vacancies created or annihilated by the presence of different additives. Electron paramagnetic resonance (EPR) analysis of sintered samples evidenced a substantial increase in the paramagnetic oxygen vacancies concentration when Nb2O5 is added to the SnO2 center dot Co3O4 system. on the other hand, the observed diminution in the concentration of such species after the addition of Fe2O3 indicates solid solution formation. The quantification of paramagnetic oxygen vacancies allowed to confirm the proposed substitutions taking place in the lattice during sintering. These findings are supported by scanning electron microscopy, by density measurements and by current density versus electric field curves. The characterization of secondary phases through EDS assisted SEM and TEM is also reported in this work.
Resumo:
Detailed room temperature micro-Raman scattering, X-ray diffraction, atomic force microscopy and specular reflectance infrared Fourier transform spectroscopy studies were carried out on soft chemical by processed Pb1-xBaxTiO3 thin films. The micro-Raman spectra pointed the existence of a stable tetragonal ferroelectric phase in the entire composition range (0 < x <= 1). The infrared reflectance spectra showed that the frequency of several peaks decreases as the Ba2+ concentration increases. These features are correlated to a decrease in the tetragonal distortion of the TiO6 octahedra as the Ba2+ concentration increases. Furthermore, as x increases from 0.70 to 1.0, the Raman spectrum shows an evolution towards the well-known Raman spectrum of the tetragonal BaTiO3. Therefore, we demonstrated that the combination of solid solution PbTiO3-BaTiO3 with a grain size in the order of 30-40 nm supports the tetragonal ferroelectric phase at room temperature. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A digital image processing and analysis method has been developed to classify shape and evaluate size and morphology parameters of corrosion pits. This method seems to be effective to analyze surfaces with low or high degree of pitting formation. Theoretical geometry data have been compared against experimental data obtained for titanium and aluminum alloys subjected to different corrosion tests. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Light scattering, electron microscopy and X-ray diffraction are used to determine the morphology and size of particles in diluted aqueous gel of tin (IV) oxyhydroxide. Data show that the gel is composed of spherical 2-3 nm sized crystalline particles aggregated as rigid branched chains. It is suggested that stiffness of chains results from dissolution-precipitation equilibria and chemical bonding between particles within the chains. © 1994.
Resumo:
The use of polymeric precursors was employed in preparing SrTiO3 thin films by dip coating using Si (111) as substrate. Crack free films were obtained after sintering at temperatures ranging from 550 to 1000°C. The microstructure, characterized by SEM, shows the development of dense polycrystalline films with smooth surface and mean grain size of 52 nm, for films sintered at 1000°C. Grazing incident angle XRD characterization of these films shows that the SrTiO3 phase crystallizes from an inorganic amorphous matrix. No intermediate crystalline phase was identified.
Resumo:
Pure BBN powders and with addition of 1 and 2 wt% in excess of bismuth were obtained by Pechini Method. The powders calcined at 300°C/4h were analyzed by TG/DTA to study the temperature of organic matter decomposition. A systematic study of calcination temperature and time to the formation of the BBN phase was performed and the phase formation was accompanied by XRD. The calcined powders at 800°C during 2h were analyzed by infrared spectroscopy and by BET. The powders were isostaticaly pressed and sintered at temperatures ranging from 900°C to 1000°C. The ceramics were characterized by XRD to control the crystalline phase and by SEM to analyze the microstructure.
Resumo:
The aims of this study were to characterize the microstructure of a commercially pure titanium (cpTi) surface etched with HCl/H 2SO 4 (AE-cpTi) and to investigate its in vitro cytocompatibility compared to turned cpTi (T-cpTi). T-cpTi showed a grooved surface and AE-cpTi revealed a surface characterized by the presence of micropits. Surface parameters indicated that the AE-cpTi surface is more isotropic and present a greater area compared to T-cpTi. The oxide film thickness was similar between both surfaces; however, AE-cpTi presented more Ti and O and less C. Osteoblastic cell proliferation, alkaline phosphatase activity, and bone-like nodule formation were greater on T-cpTi than on AE-cpTi. These results show that acid etching treatment produced a surface with different topographical and chemical features compared to the turned one, and such surface modification affected negatively the in vitro cytocompatibility of cpTi as demonstrated by decreasing culture growth and expression of osteoblastic phenotype.
Resumo:
High chromium content is responsible for the formation of a protective passive surface layer on austenitic stainless steels (ASS). Due to their larger amounts of chromium, superaustenitic stainless steels (SASS) can be chosen for applications with higher corrosion resistance requirements. However, both of them present low hardness and wear resistance that has limited their use for mechanical parts fabrication. Plasma nitriding is a very effective surface treatment for producing harder and wear resistant surface layers on these steel grades, without harming their corrosion resistance if low processing temperatures are employed. In this work UNS S31600 and UNS S31254 SASS samples were plasma nitrided in temperatures from 400 °C to 500 °C for 5 h with 80% H 2-20% N2 atmosphere at 600Pa. Nitrided layers were analyzed by optical (OM) and transmission electron microscopy (TEM), x-ray diffraction (XRD), and Vickers microhardness testing. Observations made by optical microscopy showed that N-rich layers were uniform but their thicknesses increased with higher nitriding temperatures. XRD analyses showed that lower temperature layers are mainly composed by expanded austenite, a metastable nitrogen supersaturated phase with excellent corrosion and tribological properties. Samples nitrided at 400 °C produced a 5 μm thick expanded austenite layer. The nitrided layer reached 25 lm in specimens treated at 500 °C. There are indications that other phases are formed during higher temperature nitriding but XRD analysis was not able to determine that phases are iron and/or chromium nitrides, which are responsible for increasing hardness from 850 up to 1100 HV. In fact, observations made by TEM have indicated that formation of fine nitrides, virtually not identified by XRD technique, can begin at lower temperatures and their growth is affected by both thermodynamical and kinetics reasons. Copyright © 2012 by ASTM International.
Resumo:
The sluggish kinetics of ethanol oxidation on Pt-based electrodes is one of the major drawbacks to its use as a liquid fuel in direct ethanol fuel cells, and considerable efforts have been made to improve the reaction kinetics. Herein, we report an investigation on the effect of the Pt microstructure (well-dispersed versus agglomerated nanoparticles) and the catalyst support (carbon Vulcan, SnO2, and RuO2) on the rate of the electrochemical oxidation of ethanol and its major adsorbed intermediate, namely, carbon monoxide. By using several structural characterization techniques such as X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy, along with potentiodynamic and potentiostatic electrochemical experiments, we show that by altering both the Pt microstructure and the support, the rate of the electrochemical oxidation of ethanol can be improved up to a factor of 12 times compared to well-dispersed carbon-supported Pt nanoparticles. As a result of a combined effect, the interaction of Pt agglomerates with SnO2 yielded the highest current densities among all materials studied. The differences in the activity are discussed in terms of structural and electronic properties as well as by mass transport effects, providing valuable insights to the development of more active materials. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Breast cancer is a public health problem throughout the world. Moreover, breast cancer cells have a great affinity for hydroxyapatite, leading to a high occurrence of bone metastasis. In this work we developed a bio-nanocomposite (bio-NCP) in order to use such affinity in the diagnosis and treatment of breast cancer. The bio-NCP consists of magnetic nanoparticles of Mn and Zn ferrite inside a polymeric coating (chitosan) modified with nanocrystals of apatite. The materials were characterized with synchrotron X-ray Powder Diffraction (XPD), Time-of-Flight Neutron Powder Diffraction (NPD), Fourier Transformed Infra-red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and magnetic measurement with a Physical Property Measurement System (PPMS). We obtained ferrite nanoparticles with a high inversion degree of the spinel structure regarding the Fe and Mn, but with all the Zn in the A site. The coating of such nanoparticles with chitosan had no notable effects to the ferrite microstructure. In addition, the polymeric surface can be easily modified with apatite nanocrystals since the hydration of the bio-NCP during synthesis can be controlled. The resulting bio-NCP presents a spherical shape with a narrow size distribution and high magnetic response at room temperature and is a very promising material for early diagnosis of breast cancer and its treatment. © 2013 Elsevier B.V.
Resumo:
Nesse trabalho, foram caracterizados, pela primeira vez, azulejos históricos portugueses do Centro Histórico de São Luís (CHSL) do Maranhão. A caracterização foi realizada através dos ensaios de microscopia ótica, difração de raios X (DRX) e análise química, visando ao uso dessa informação para a determinação das possíveis matérias-primas utilizadas na sua fabricação, bem como a provável temperatura de queima desses materiais. Os resultados mostraram que a microestrutura desses materiais é constituída por poros de tamanhos variados, apresentando incrustações de calcita e grãos de quartzo de tamanhos inferiores a 500 µm, distribuídos numa matriz de cor rosa-amarelo, onde foram identificadas, por DRX, as fases minerais calcita, gelhenita, wollastonita, quartzo e amorfo. A partir da informação obtida, é possível inferir que as matérias-primas originais estiveram constituídas, provavelmente, por mistura de argilas caoliníticas (Al2O3•2SiO,2•2H2O), ricas em carbonatos de cálcio e quartzo ou misturas de argilas caoliniticas, quartzo e calcita. Essas matérias-primas originais não atingiram a temperatura de cocção de 950ºC.
Resumo:
The main purpose of this paper is to investigate both the columnar to equiaxed transition and primary dendritic arm spacings of Al-3wt.%Si alloy during the horizontal directional solidification. The transient heat transfer coefficient at the metal-mold interface is calculated based on comparisons between the experimental thermal profiles in castings and the simulations provided by a finite difference heat flow program. Simulated curve of the interfacial heat transfer coefficient was used in another numerical solidification model to determine theoretical values of tip growth rates, cooling rates and thermal gradients that are associated with both columnar to equiaxed transition and primary dendritic arm spacings. A good agreement was observed between the experimental values of these thermal variables and those numerically simulated for the alloy examined. A comparative analysis is carried out between the experimental data of this work and theoretical models from the literature that have been proposed to predict the primary dendritic spacings. In this context, this study may contribute to the understanding of how to manage solidification operational parameters aiming at designing the microstructure of Al-Si alloys.
Resumo:
The 4340 are classified as ultra-high strength steels used by the aviation industry and aerospace applications such as aircraft landing gear and several structural applications, usually in quenched and tempered condition. In this situation occurs reduction of toughness, which encourages the study of multiphasic and bainitic structures, in order to maintain strength without loss of toughness. In this study, ferritic-pearlitic structure was compared to bainitic and martensitic structure, identified by the reagents Nital, LePera and Sodium Metabisulfite. Sliding wear tests of the type pin-on-disk were realized and the results related to the microstructure of these materials and also to their hardnesses. It is noted that these different microstructures had very similar behavior, concluding that all three tested pairs can be used according to the request level.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)