984 resultados para Microstructural


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we demonstrate that the structural and optical properties of Si nanoclusters (Si ncs) formed by thermal annealing of SiOx films prepared by plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering are very different. In fact, at a fixed Si excess and annealing temperature, photoluminescence (PL) spectra of sputtered samples are redshifted with respect to PECVD samples, denoting a larger Si ncs size. In addition, PL intensity reaches a maximum in sputtered films at annealing temperatures much lower than those needed in PECVD films. These data are correlated with structural properties obtained by energy filtered transmission electron microscopy and electron energy loss spectroscopy. It is shown that in PECVD films only around 30% of the Si excess agglomerates in clusters while an almost complete agglomeration occurs in sputtered films. These data are explained on the basis of the different initial structural properties of the as-deposited films that become crucial for the subsequent evolution. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline GaN thin films have been deposited epitaxially on a ZnO-buffered (111)-oriented Si substrate by molecular beam epitaxy. The microstructural and compositional characteristics of the films were studied by analytical transmission electron microscopy (TEM). A SiO2 amorphous layer about 3.5 nm in thickness between the Si/ZnO interface has been identified by means of spatially resolved electron energy loss spectroscopy. Cross-sectional and plan-view TEM investigations reveal (GaN/ZnO/SiO2/Si) layers exhibiting definite a crystallographic relationship: [111](Si)//[111](ZnO)//[0001](GaN) along the epitaxy direction. GaN films are polycrystalline with nanoscale grains (similar to100 nm in size) grown along [0001] direction with about 20degrees between the (1 (1) over bar 00) planes of adjacent grains. A three-dimensional growth mode for the buffer layer and the film is proposed to explain the formation of the as-grown polycrystalline GaN films and the functionality of the buffer layer. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure of silicon on defect layer, a new type of silicon-on-insulator material using proton implantation and two-step annealing to obtain a high resistivity buried layer beneath the silicon surface, has been investigated by transmission electron microscopy. Implantation induced a heavily damaged region containing two types of extended defects involving hydrogen: {001} platelets and {111} platelets. During the first step annealing, gas bubbles and {111} precipitates formed. After the second step annealing, {111} precipitates disappeared, while the bubble microstructure still remained and a buried layer consisting of bubbles and dislocations between the bubbles was left. This study shows that the dislocations pinning the bubbles plays an important role in stabilizing the bubbles and in the formation of the defect insulating layer. (C) 1996 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline GaN thin films have been deposited epitaxially on a ZnO-buffered (111)-oriented Si substrate by molecular beam epitaxy. The microstructural and compositional characteristics of the films were studied by analytical transmission electron microscopy (TEM). A SiO2 amorphous layer about 3.5 nm in thickness between the Si/ZnO interface has been identified by means of spatially resolved electron energy loss spectroscopy. Cross-sectional and plan-view TEM investigations reveal (GaN/ZnO/SiO2/Si) layers exhibiting definite a crystallographic relationship: [111](Si)//[111](ZnO)//[0001](GaN) along the epitaxy direction. GaN films are polycrystalline with nanoscale grains (similar to100 nm in size) grown along [0001] direction with about 20degrees between the (1 (1) over bar 00) planes of adjacent grains. A three-dimensional growth mode for the buffer layer and the film is proposed to explain the formation of the as-grown polycrystalline GaN films and the functionality of the buffer layer. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solidification behavior and microstructural evolution of surface modified layers in plasma cladding technique are studied via numerical simulations. Both the coupling effect of temperature and solid volume fraction are considered in the proposed thermal analytical model, by which the transient temperature distributions are calculated and the shape of melting pool is determined. Furthermore, we perform microscopic thermal analysis on the nucleation and growth behaviors of ceramic hardening phases and dendrites, as well as the kinetics of related two-phase flow systems. By comparing with experimental observations, the evolution mechanisms of the morphology of Al2O3 ceramic hardening layer are explained. Based on the above results, a relationship among the scanning velocity of plasma stream, dendritic growth rate and the advancing speed of solid/liquid interface is found, and an energy criterion is proposed for predicting the pushing/engulfing transition of ceramic particles by grain growth fronts. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work p-type Si specimens were implanted with Cl ions of 100 keV to successively increasing fluences of 1 x 10(15), 5 x 10(15), 1 x 10(16) and 5 x 10(16) ions cm(-2) and subsequently annealed at 1073 K for 30 min. The microstructure was investigated with the transmission electron microscopy (TEM) in both the plane-view and the cross-sectional view. The implanted layer was amorphized after chlorine implantation even at the lowest ion fluence, while re-crystallization of the implanted layer occurs on subsequent annealing at 1073 K. In the annealed specimens implanted above the lowest fluence three layers along depth with different microstructures were found, which include a shallow polycrystalline porous layer, a deeper single-crystalline layer containing high density of gas bubbles, a well separated deeper layer composed of dislocation loops in low density. With increasing ion fluence the thickness of the porous polycrystalline layer increases. It is indicated that chlorine can suppress the epitaxial re-crystallization of implanted silicon, when the implant fluence of Cl ions exceeds a certain level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosized stannic oxide particles modified with a layer of DBS were successfully prepared through the colloidal chemical method and their microstructures were characterized. FTIR and XPS were used for the determination of the main components. It can be proved that the nanosized SnO2 particles were capped by DBS. The sizes of particle were determined by TEM and XRD. By the investigation of XPS, we can conclude that there are a lot of oxygen vacancies in the surface of the nanoparticulates. Based on this conclusion, the ESR signal of the sample can be explained.