969 resultados para Microstrip array antenna
Resumo:
In this letter, we propose a method for blind separation of d co-channel BPSK signals arriving at an antenna array. Our method involves two steps. In the first step, the received data vectors at the output of the array is grouped into 2d clusters. In the second step, we assign the 2d d-tuples with ±1 elements to these clusters in a consistent fashion. From the knowledge of the cluster to which a data vector belongs, we estimate the bits transmitted at that instant. Computer simulations are used to study the performance of our method
Resumo:
The design and development of nonresonant edge slot antenna for phased array applications has been presented. The radiating element is a slot cut on the narrow wall of rectangular waveguide (edge slot). The admittance characteristics of the edge slot have been rigorously studied using a novel hybrid method. Nonresonant arrays have been fabricated using the present slot characterization data and the earlier published data. The experimentally measured electrical characteristics of the antenna are presented which clearly brings out the accuracy of the present method.
Resumo:
In this paper we demonstrate the use of multi-port network modeling to analyze one such antenna with fractal shaped parts. Based on simulation and experimental studies, it has been demonstrated that model can accurately predict the input characteristics of antennas with Minkowski geometry replacing a side micro strip square ring.
Resumo:
[ES]El objetivo final del trabajo fin de grado, que se expone en este documento, trata sobre el diseño de un array de antena de microstrip, con la intención de que se utilice para aplicaciones de comunicación entre vehículos que trabajen en la banda de los 5 GHz, bajo el estándar ITS-G5/IEEE 802.11p, además de su fabricación y medición posterior para poder compararlos con las simulaciones. Se buscará que la ganancia de la antena sea la máxima posible pero tratando de conseguir a su vez el mayor ancho de banda dentro del rango de frecuencias requerido. Para el diseño se partirá de un único parche y se le irán añadiendo los demás componentes progresivamente (reflectores, desfasadores, mayor número de parches, transformadores λ/4, etc.) y se irán estudiando sus simulaciones. Todas estas simulaciones se realizarán con el programa HFSS.
Resumo:
In this we have looked at the concept of introducing carbon nanotubes on the surfaces of the microstrip patch antennas. We examined the performance improvements in a patch antenna through finite difference time domain simulations to increase the efficiency of the antenna. The results suggest that carbon nanotubes lead to a higher gain due to their electrical properties. A high gain antenna with low power requirements resulted in achieving a higher overall bandwidth. The designed antenna's gain, bandwidth and directivity are analyzed before and after introducing carbon nanotubes. © 2013 IEEE.
Resumo:
In this paper, we verify a new phase conjugating architecture suitable for deployment as (lie core building block in retrodirective antenna arrays, which can be scaled to any number of elements in a modular way without impacting on complexity. Our solution is based on a modified in-phase and quadrature modulator architecture, which completely resolves four major shortcomings of the conventional mixer-based approach currently used for the synthesis of phase conjugated energy derived from a sampled incoming wavefront. 1) The architecture presented removes the need for a local oscillator running at twice the RF signal frequency to be conjugated. 2) It maintains a constant transmit power even if receive power goes as low as -120 dBm. 3) All unwanted re-transmit signal products are suppressed by at least 40 dB. 4) The issue of poor RF-IF leakage prevalent in mixer-based phase-conjugation solutions is completely mitigated. The circuit has also been shown to have high conjugation accuracy (better than +/-1 degrees at -60-dBm input). Near theoretically perfect experimental monostatic and bistatic results are presented for a ten-element retrodirective array constructed using the new phase conjugation architecture.
Resumo:
A numerical-analytical method is developed for solving surface integral equations (IEs) describing electromagnetic wave diffraction from arrays of complex-shaped planar reflectors. Solutions to these equations are regularized via analytical transformation of the separated singular part of the matrix kernel. Basis functions satisfying the metal-edge condition are determined on the entire surface of the complex region. The amplitude and phase responses of arrays consisting of polygonal reflectors are numerically investigated.