981 resultados para MgO
Resumo:
Catalysts containing NiO/MgO/ZrO(2) mixtures were synthesized by the polymerization method in a single step. They were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR) and physisorption of N(2) (BET) and then tested in the reforming of a model biogas (1.5CH4:1CO(2)) in the presence of air (1.5CH(4) + 1CO(2) + 0.25O(2)) at 750 degrees C for 6h. It was observed that the catalyst Ni20MZ performed better in catalytic processes than the well known catalysts, Ni/ZrO(2) and Ni/MgO, synthesized under the same conditions. The formation of solid solutions, MgO-ZrO(2) and NiO-MgO, increased the rate of conversion of reactants (CH(4) and CO(2)) into synthesis gas (H(2) + CO). The formation of oxygen vacancies (in samples containing ZrO(2) and MgO) seems to promote removal of the coke deposited on the nickel surface. The values of the H(2)/CO ratio were generally found to be slightly lower than stoichiometric, owing to the reverse water gas shift reaction occurring in parallel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
MgO based refractory castables draw wide technological interest because they have the versatility and installation advantages of monolithic refractories with intrinsic MgO properties, such as high refractoriness and resistance to basic slag corrosion. Nevertheless, MgO easily reacts with water to produce Mg(OH)(2), which is followed by a large volumetric expansion, limiting its application in refractory castables. In order to develop solutions to minimize this effect, a better understanding of the main variables involved in this reaction is required. In this work, the influence of temperature, as well as the impact of the chemical equilibrium shifting (known as the common-ion effect), on MgO hydration was evaluated. Ionic conductivity measurements at different temperatures showed that the MgO hydration reaction is accelerated with increasing temperature. Additionally, different compounds were added to evaluate their influence on the reaction rate. Among them, CaCl(2) delayed the reaction, whereas KOH showed an opposite behavior. MgCl(2) and MgSO(4) presented similar results and two other distinct effects, reaction delay and acceleration, which depended on their concentration in the suspensions. The results were evaluated by considering the kinetics and the thermodynamics of the reaction, and the mechanical damages in the samples that was caused by the hydration reaction. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The study and fabrication of nanostructured systems composed of magnetic materials has been an area of great scientific and technological interest. Soft magnetic materials, in particular, have had great importance in the development of magnetic devices. Among such materials we highlight the use of alloys of Ni and Fe, known as Permalloy. We present measurement results of structural characterization and magnetic films in Permalloy (Ni81Fe19), known to be a material with high magnetic permeability, low coercivity and small magneto- crystalline anisotropy, deposited on MgO (100) substrates. The Magnetron Sputtering technique was used to obtain the samples with thicknesses varying between 9 150 nm. The techniques of X- ray Diffraction at high and low angle were employed to confirm the crystallographic orientation and thickness of the films. In order to investigate the magnetic properties of the films the techniques of Vibrant Sample Magnetometry (VSM), Ferromagnetic Resonance (FMR) and Magnetoimpedance were used. The magnetization curves revealed the presence of anisotropy for the films of Py/MgO (100), where it was found that there are three distinct axis - an easy-axis for θH = 0°, a hard-axis for θH = 45° and an intermediate for θH = 90°. The results of the FMR and Magnetoimpedance techniques confirm that there are three distinct axes, that is, there is a type C2 symmetry. Then we propose, for these results, the interpretation of the magnetic anisotropy of Py/MgO ( 100 ) is of type simple C2, ie a cubic magnetic anisotropy type ( 110 )
Resumo:
The research behind this master dissertation started with the installation of a DC sputtering system, from its first stage, the adaptation of a refrigerating system, passing by the introduction of a heating system for the chamber using a thermal belt, until the deposition of a series of Fe/MgO(100) single crystal nanometric film samples. The deposition rates of some materials such as Fe, Py and Cu were investigated through an Atomic Force Microscope (AFM). For the single crystal samples, five of them have the same growth parameters and a thickness of 250Å, except for the temperature, which varies from fifty degrees from one to another, from 100ºC to 300ºC. Three other samples also have the same deposition parameters and a temperature of 300ºC, but with thickness of 62,5Å, 150Å, and 250Å. Magneto-optical Kerr Effect (MOKE) of the magnetic curves measurements and Ferromagnetic Resonance (FMR) were made to in order to study the influence of the temperature and thickness on the sample s magnetic properties. In the present dissertation we discuss such techniques, and the experimental results are interpreted using phenomenological models, by simulation, and discussed from a physical point of view, taking into account the system s free magnetic energy terms. The results show the growth of the cubic anisotropy field (Hac) as the sample s deposition temperature increases, presenting an asymptotic behavior, similar to the characteristic charging curve of a capacitor in a RC circuit. A similar behavior was also observed for the Hac due to the increase in the samples thicknesses. The 250˚A sample, growth at 300°C, presented a Hac field close to the Fe bulk value
Resumo:
In this work we have developed a way to grow Fe/MgO(100) monocrystals by magnetron sputtering DC. We investigated the growing in a temperature range among 100 oC and 300 oC. Structural and magneto-crystalline properties were studied by different experimental techniques. Thickness and surface roughness of the films were investigated by atomic force microscopy, while magneto-crystalline properties were investigated by magneto-optical Kerr effect and ferromagnetic resonance. Our results show that as we increase the deposition temperature, the magneto-crystalline anisotropy of the films also increases, following the equation of Avrami. The best temperature value to make a film is 300 oC. As the main result, we built a base of magnetoresistence devices and as an aplication, we present measurements of Fe/Cr/Fe trilayer coupling. In a second work we investigated the temperature dependence of the first three interlayer spacings of Ag(100) surface using low energy electron diffraction. A linear expansion model of crystal surface was used and the values of Debye temperatures of the first two layers and thermal expansion coefficient were determinated. A relaxation of 1% was found for Ag(100) surface and these results are matched with faces (110) and (111) of the silver. iv
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ab initio calculations of large cluster models have been performed in order to study water adsorption at the five-fold coordinated adsorption site on pure Mg(001) and MgO(001) surfaces doped with Fe, Ca, and Al. The geometric parameters of the adsorbed water molecule have been optimized preparatory to analysis of binding energies, charge transfer, preferential sites of interaction, and bonding distances. We have used Mulliken population analysis methods in order to analyze charge distributions and the direction of charge transfer. We have also investigated energy gaps, HOMO energies, and SCF orbital energies as well as the acid-base properties of our cluster model. Numerical results are compared, where possible, with experiment and interpreted in the framework of various analytical models. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The sintering of ZrO2. MgO . ZnO powder has been investigated by TMA (Thermal Mechanical Analyser) and its phases analysed by XRD (X-ray diffraction pattern). The data obtained from sintering was studied by the Bannister equation and its dominant sintering mechanism was calculated. It was observed that the ZnO addition in the ZrO2. MgO solid solution lead to increased zirconia stabilization, According to the vacancies model, the ZnO addition did not lead to zirconia phases stabilization (PSZ). An analysis of the rate control in the initial stage of the sintering (region I) showed a mechanism of volume diffusion type. In other regions (regions II and III), the grain growth did lead to the Bannister equation deviation, which was observed by SEM (Scanning Electron Microscopy). These results were different from those demonstrated by other authors who studied the ZrO2. Y2O3 solid solution and obtained a mechanism of grain boundary diffusion type. (C) 1999 Published by Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
Substitutions of Ti and Cu in ZrO2.MgO (Z), cause transformation from monoclinic (m) to cubic (c) and tetragonal (t). According to the vacancy model and solid Solution formation models, neither CuO nor TiO2 cause zirconia stabilization, which derives front other phenomena. Data analysis by TMA using the CRH (constant rate of heating) method shows a solid state reaction of ZrO2.MgO.TiO2 (Z.TiO2) demonstrating a dominant mechanism of volume diffusion (n = 1). However, the sintering of ZrO2.MgO.CuO (Z.CuO) shows a viscous flow mechanism (n = 0), a similar phenomena to that of by sintering of glass. Transformations, such as: CuO to Cu2O at 1000 degreesC, ZrO2 (m) to ZrO2 (t) at 1100 degreesC and Cu2O (s) to Cu2O (l) at 1230 degreesC cause successive rearrangements of microstructure inside of region I (sintering process) and lead to interpretation errors when the Bannister equation is used. (C) 2003 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
In the work described in the present paper, an analytical solution of the general heat conduction equation was employed to assay the temperature profile inside a solid slab which is initially at room temperature and is suddenly plunged into a fluid maintained at a high temperature. The results were then extrapolated to a simulation of a hot modulus of rupture test of typical MgO-graphite refractory samples containing different amounts of graphite in order to evaluate how fast the temperature equilibrates inside the test specimens. Calculations indicated that, depending on the graphite content, the time to full temperature homogenization was in the range of 80 to 200 s. These findings are relevant to the high temperature testing of such refractories in oxidizing conditions in view of the graphite oxidation risks in the proper evaluation of the hot mechanical properties.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This paper presents the study results with glass-ceramics obtained from base glass (MgO-Al2O3- SiO2-Li2O system) with addition of ZrO2 as nucleating agent. The glass was melted at 1650 degrees C for 3 h and at a heating rate of 10 degrees C/min. The molten glass was poured into a graphite mold to obtain monolithic samples and also in water in order to obtain particulate material. Such material was grinded and then pressed by both uniaxial and isostatic pressing methods before being sintered. Both the monolithic and pressed samples were performed under two different conditions of heat treatment so that their nucleation and crystallization occurred. In the first one, the samples were heated to 1100 degrees C with a heating rate of 10 degrees C/min. In the second one, there was an initial heating rate of 10 degrees C/min up to 780 degrees C, which was kept for 5 minutes. After that, the samples were heated to 1100 degrees C at a heating rate of 1 degrees C/min. Microhardness analyses showed that base glass presented values around 7.0 GPa. The glass-ceramics obtained from the powder sintering showed microhardness values lower than those obtained from monolithic samples. The highest hardness values were observed in the samples which were treated with two heating rates, whose values were around 9.2 +/- 0.5 GPa. Moreover, the glass-ceramics which were produced with an only heating rate, presented values around 7.1 +/- 0.2 GPa, very close to those observed in the base glass.
Resumo:
Carbon-containing refractory materials have received great attention over the last years due to their importance in the steelmaking process. The oxidation of carbon present in refractory materials at temperatures above 500 degrees C is usually accompanied by the decrease of their mechanical strength and chemical resistance. Aiming to improve the oxidation resistance of carbon-oxide refractories, the use of materials known as antioxidants has been extensively studied. In this work we evaluated the performance of MgB2 and B4C antioxidants when incorporated into MgO-C bricks. We observed that the co-addition of metallic antioxidants and B4C or MgB2 leads to refractory bricks with enhanced hot modulus of rupture and resistance against oxidation and slag corrosion. However, the excessive addition of these antioxidants could impair the performance of the obtained bricks. Thus, when determining the optimum concentration of MgB2 and B4C to be added into MgO-C refractories, one must take into consideration this behavior. (c) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Catalysts containing mixtures of NiO, MgO and ZrO2 were synthesized by the polymerization method. They were characterized by X-ray diffraction (XRD), physisorption of N-2 (BET), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES), and then tested in the partial oxidation of methane (POM) in the presence of air (2CH(4):1O(2)) at 750 degrees C for 6 h. Among the ternary oxides, the catalyst with 40 mol% MgO showed the highest conversion rates in the catalytic processes, but also the highest carbon deposition values (48 mmol h (1)). The greater the amount of NiO-MgO solid solution formed, the higher was the conversion rate of reactants (CH4), peaking at 40 mol% of MgO. Catalysts with lower Ni content on the surface achieved a high rate of CH4 conversion into synthesis gas (H-2 + CO). The formation of more NiO-MgO solid solution seemed to inhibit the deactivation of Ni degrees during reaction. The values of the H-2/CO product ratio were generally found to be slightly lower than stoichiometric. (C) 2012 Elsevier Ltd. All rights reserved.