863 resultados para Metals build-up
Resumo:
Extreme cold and heat waves, characterised by a number of cold or hot days in succession, place a strain on people’s cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987–2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave’s timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the ninety-fifth to ninety-ninth percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for cold or hot temperatures.
Resumo:
The pollutant impacts of urban stormwater runoff on receiving waters are well documented in research literature. However, it is road surfaces that are commonly identified as the significant pollutant source. This paper presents the outcomes of an extensive program of research into the role of roof surfaces in urban water quality with particular focus on solids, nutrients and organic carbon. The outcomes confirmed that roof surfaces play an important role in influencing the pollutant characteristics of urban stormwater runoff. Pollutant build-up and wash-off characteristics for roads and roof surfaces were found to be appreciably different. The pollutant wash-off characteristics exhibited by roof surfaces show that it influences the first flush phenomenon more significantly than road surfaces. In most urban catchments, as roof surfaces constitutes a higher fraction of impervious area compared to road surfaces, it is important that the pollutant generation role of roof surfaces is specifically taken into consideration in stormwater quality mitigation strategies.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option.
Resumo:
Developing intercultural competence in pre-service teachers from Australia and Malaysia: Insights from a Patches program. Innovative pedagogies can offer pre-service teachers the opportunity to develop their intercultural competence and take up more globalised viewpoints. One such innovation is the Patches program which brought together Malaysian and Australian pre-service teachers who were studying at the same university in Brisbane, Australia, to actively explore issues of cultural and linguistic difference. The participants were 14 Australian fourth-year pre-service teachers who were enrolled in a program on inclusive education, and 58 Malaysian pre-service teachers who had recently arrived at the university in Brisbane to commence their second year of an international education program. In peer groupings, these domestic and international pre-service teachers engaged in a series of interactive tasks and reflective writing workshops exploring intercultural experiences, over a period of ten weeks. Each element or ‘patch’ in the program was designed to build up into a mosaic of intercultural learning. The flexible structuring of the Patches Program provided a supportive framework for participant interaction whilst allowing the groups to decide for themselves the nature and extent of their involvement in a series of community-related tasks. The process of negotiating and implementing these activities formed the basis for establishing meaningful relationships between the participants. The development of the participants’ intercultural competence is traced through their reflective narratives and focus group discussions, drawing on Byram’s concept of the five savoirs. Explaining aspects of Australian culture to their newly arrived Malaysian peers, allowed the Australian pre-service teachers to take a perspective of outsideness towards their own familiar social practices. In addition, being unusually positioned as the linguistic other amongst a group of Bahasa Melayu speakers, highlighted for the Australian pre-service teachers the importance of being inclusive. For the Malaysian pre-service teachers, participation in the Patches program helped to extend intercultural understandings, establish social networks with local students, and build a sense of community in their new learning environment. Both groups of pre-service teachers noted the power of “learning directly by interacting rather than through books”. In addition to interacting interculturally, the process of reflecting on these intercultural experiences is seen as integral to the development of intercultural competence.
Resumo:
The aim of this work is to develop software that is capable of back projecting primary fluence images obtained from EPID measurements through phantom and patient geometries in order to calculate 3D dose distributions. In the first instance, we aim to develop a tool for pretreatment verification in IMRT. In our approach, a Geant4 application is used to back project primary fluence values from each EPID pixel towards the source. Each beam is considered to be polyenergetic, with a spectrum obtained from Monte Carlo calculations for the LINAC in question. At each step of the ray tracing process, the energy differential fluence is corrected for attenuation and beam divergence. Subsequently, the TERMA is calculated and accumulated to an energy differential 3D TERMA distribution. This distribution is then convolved with monoenergetic point spread kernels, thus generating energy differential 3D dose distributions. The resulting dose distributions are accumulated to yield the total dose distribution, which can then be used for pre-treatment verification of IMRT plans. Preliminary results were obtained for a test EPID image comprised of 100 9 100 pixels of unity fluence. Back projection of this field into a 30 cm9 30 cm 9 30 cm water phantom was performed, with TERMA distributions obtained in approximately 10 min (running on a single core of a 3 GHz processor). Point spread kernels for monoenergetic photons in water were calculated using a separate Geant4 application. Following convolution and summation, the resulting 3D dose distribution produced familiar build-up and penumbral features. In order to validate the dose model we will use EPID images recorded without any attenuating material in the beam for a number of MLC defined square fields. The dose distributions in water will be calculated and compared to TPS predictions.
Resumo:
Pressure feeder chutes are pieces of equipment used in sugar cane crushing to increase the amount of cane that can be put through a mill. The continuous pressure feeder was developed with the objective to provide a constant feed of bagasse under pressure to the mouth of the crushing mills. The pressure feeder chute is used in a sugarcane milling unit to transfer bagasse from one set of crushing rolls to a second set of crushing rolls. There have been many pressure feeder chute failures in the past. The pressure feeder chute is quite vulnerable and if the bagasse throughput is blocked at the mill rollers, the pressure build-up in the chute can be enormous, which can ultimately result in failure. The result is substantial damage to the rollers, mill and chute construction, and downtimes of up to 48 hours can be experienced. Part of the problem is that the bagasse behaviour in the pressure feeder chute is not understood well. If the pressure feeder chute behaviour was understood, then the chute geometry design could be modified in order to minimise risk of failure. There are possible avenues for changing pressure feeder chute design and operations with a view to producing more reliable pressure feeder chutes in the future. There have been previous attempts to conduct experimental work to determine the causes of pressure feeder chute failures. There are certain guidelines available, however pressure feeder chute failures continue. Pressure feeder chute behaviour still remains poorly understood. This thesis contains the work carried out between April 14th 2009 and October 10th 2012 that focuses on the design of an experimental apparatus to measure forces and visually observe bagasse behaviour in an attempt to understand bagasse behaviour in pressure feeder chutes and minimise the risk of failure.
Resumo:
A technique for analysing exhaust emission plumes from unmodified locomotives under real world conditions is described and applied to the task of characterizing plumes from railway trains servicing an Australian shipping port. The method utilizes the simultaneous measurement, downwind of the railway line, of the following pollutants; particle number, PM2.5 mass fraction, SO2, NOx and CO2, with the last of these being used as an indicator of fuel combustion. Emission factors are then derived, in terms of number of particles and mass of pollutant emitted per unit mass of fuel consumed. Particle number size distributions are also presented. The practical advantages of the method are discussed including the capacity to routinely collect emission factor data for passing trains and to thereby build up a comprehensive real world database for a wide range of pollutants. Samples from 56 train movements were collected, analyzed and presented. The quantitative results for emission factors are: EF(N)=(1.7±1)×1016 kg-1, EF(PM2.5)= (1.1±0.5) g·kg-1, EF(NOx)= (28±14) g·kg-1, and EF(SO2 )= (1.4±0.4) g·kg-1. The findings are compared with comparable previously published work. Statistically significant (p<α, α=0.05) correlations within the group of locomotives sampled were found between the emission factors for particle number and both SO2 and NOx.
Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces
Resumo:
Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon has gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150µm compared to particles <150µm. As particle size reduces below 150µm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption.
Resumo:
One limitation of electrospinning stems from the charge build-up that occurs during processing, preventing further fibre deposition and limiting the scaffold overall thickness and hence their end-use in tissue engineering applications targeting large tissue defect repair. To overcome this, we have developed a technique in which thermally induced phase separation (TIPS) and electrospinning are combined. Thick three-dimensional, multilayered composite scaffolds were produced by simply stacking individual polycaprolactone (PCL) microfibrous electrospun discs into a cylindrical holder that was filled with a 3% poly(lactic-co-glycolic acid) (PLGA) solution in dimethylsulfoxide (a good solvent for PLGA but a poor one for PCL). The construct was quenched in liquid nitrogen and the solvent removed by leaching out in cold water. This technique enables the fabrication of scaffolds composed principally of electrospun membranes that have no limit to their thickness. The mechanical properties of these scaffolds were assessed under both quasi-static and dynamic conditions. The multilayered composite scaffolds had similar compressive properties to 5% PCL scaffolds fabricated solely by the TIPS methodology. However, tensile tests demonstrated that the multilayered construct outperformed a scaffold made purely by TIPS, highlighting the contribution of the electrospun component of the composite scaffold to enhancing the overall mechanical property slate. Cell studies revealed cell infiltration principally from the scaffold edges under static seeding conditions. This fabrication methodology permits the rapid construction of thick, strong scaffolds from a range of biodegradable polymers often used in tissue engineering, and will be particularly useful when large dimension electrospun scaffolds are required.
Resumo:
Electrospun scaffolds manufactured using conventional electrospinning configurations have an intrinsic thickness limitation, due to a charge build-up at the collector. To overcome this limitation, an electrostatic lens has been developed that, at the same relative rate of deposition, focuses the polymer jet onto a smaller area of the collector, resulting in the fabrication of thick scaffolds within a shorter period of time. We also observed that a longer deposition time (up to 13 h, without the intervention of the operator) could be achieved when the electrostatic lens was utilised, compared to 9–10 h with a conventional processing set-up and also showed that fibre fusion was less likely to occur in the modified method. This had a significant impact on the mechanical properties, as the scaffolds obtained with the conventional process had a higher elastic modulus and ultimate stress and strain at short times. However, as the thickness of the scaffolds produced by the conventional electrospinning process increased, a 3-fold decrease in the mechanical properties was observed. This was in contrast to the modified method, which showed a continual increase in mechanical properties, with the properties of the scaffold finally having similar mechanical properties to the scaffolds obtained via the conventional process at longer times. This “focusing” device thus enabled the fabrication of thicker 3-dimensional electrospun scaffolds (of thicknesses up to 3.5 mm), representing an important step towards the production of scaffolds for tissue engineering large defect sites in a multitude of tissues.
Resumo:
The effect of storage time on the cyclability of lithium electrodes in an ionic liquid electrolyte, namely 0.5 m LiBF4 in N-methyl-N-propyl pyrrolidinium bis(fluorosulfonyl)imide, [C3mpyr+][FSI–], was investigated. A chemical interaction was observed which is time dependent and results in a morphology change of the Li surface due to build up of passivation products over a 12-day period. The formation of this layer significantly impacts on the Li electrode resistance before cycling and the charging/discharging process for symmetrical Li|0.5 m LiBF4 in [C3mpyr+][FSI–]|Li coin cells. Indeed it was found that introducing a rest period between cycling, and thereby allowing the chemical interaction between the Li electrode and electrolyte to take place, also impacted on the charging/discharging process. For all Li surface treatments the electrode resistance decreased after cycling and was due to significant structural rearrangement of the surface layer. These results suggest that careful electrode pretreatment in a real battery system will be required before operation.
Resumo:
Design is a way of thinking and working that systematically can create immense societal change. In particular, fashion design is one of the most progressively forward-looking creative and commercial generators that can envisage and initiate meaningful visual and social transformation. If we look back in time at the authority of fashion, many trends have significantly induced visual norms aligning glamour and health with tanned skin - numerous examples exist, including Vogue magazine proclaiming (front-cover) that ‘The 1929 girl must be tanned’. Indeed, in a contemporary landscape, fashion trends continue to re-generate apparel that, in-the-main, has limited design resolution connected to sun safety, and surprisingly many designers elect to ignore this vital and potentially lucrative market segment. In a context with soaring skin cancer rates, how can this powerful design medium of fashion make a positive difference to sun protection; what is the untapped potential for young design talent to connect with the health sector for skin cancer prevention; and, how can fashion designers be swayed to design and produce fashionable sun-safe apparel, that address pertinent issues including heat build up, comfort and transformability? Through a case study approach, examining emergent fashion designers, this paper will propose that astute and novel avenues exist for fashion to re-think sun protective apparel, including: generation of crucial design standards for sun-safe apparel, exploration of co-branding opportunities, advancement of fashion forecasting to connect modesty of body coverage to fashion trends and alignment of the market segment to re-envisage a critical mass for fashionable sun-safe apparel.
Resumo:
Human and ecosystem health impacts imposed by water pollution are a major problem in the urban areas of Sri Lanka. A primary source of pollutants to urban water sources is atmospheric particles. Hence, it is important to develop a detailed understanding of atmospheric particle characteristics, their sources of origin and the transport pathways. Several research studies have been conducted in Sri Lanka on atmospheric pollution and these studies have tended to differ in their scope, study region and the investigated pollutants. The objectives of this paper are: (1) to report the outcomes of a detailed state-of-art literature review of atmospheric pollution related studies in Sri Lanka to understand the current trends and (2) to discuss the future research activities necessary to generate the important knowledge required for the development of effective strategies to control the adverse impacts of atmospheric pollution on urban waterways.
Resumo:
Energy auditing is an effective but costly approach for reducing the long-term energy consumption of buildings. When well-executed, energy loss can be quickly identified in the building structure and its subsystems. This then presents opportunities for improving energy efficiency. We present a low-cost, portable technology called "HeatWave" which allows non-experts to generate detailed 3D surface temperature models for energy auditing. This handheld 3D thermography system consists of two commercially available imaging sensors and a set of software algorithms which can be run on a laptop. The 3D model can be visualized in real-time by the operator so that they can monitor their degree of coverage as the sensors are used to capture data. In addition, results can be analyzed offline using the proposed "Spectra" multispectral visualization toolbox. The presence of surface temperature data in the generated 3D model enables the operator to easily identify and measure thermal irregularities such as thermal bridges, insulation leaks, moisture build-up and HVAC faults. Moreover, 3D models generated from subsequent audits of the same environment can be automatically compared to detect temporal changes in conditions and energy use over time.