945 resultados para Metal working tools


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a participatory design research framework as a primary method for structuring youth engagement, participation and contribution to the design, development and usability evaluation of three evidencebased e-tools for wellbeing, which include smart phone mobile apps as well as e-health websites. The three projects are part of a series of six e-tools part of Safe and Supportive program under Young and Well CRC. The participatory design method, developed by Zelenko (2012) for application in design of online health promoting technologies, was further piloted in partnership with Inspire USA for specific application within the CRC, deploying a combination of creative design workshops and speculative design activities in developing e-tool prototypes with young people. This paper presents the resulting participatory research framework as it was implemented across the e-tool projects to facilitate active youth participation in co-designing the e-tools and ensuring the final designs are relevant to young people and deliver health messages in engaging ways. The principles of Participatory Design (PD) that inform the new framework include a high degree of participant agency in creative decisionmaking and a commitment to the process of co-designing, with young people working alongside designers and developers. The paper will showcase how the PD framework was applied across three projects to increase young people’s contribution to final design outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a fourelectron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next reaction. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for ORR in FCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Educating responsive graduates. Graduate competencies include reliability, communication skills and ability to work in teams. Students using Collaborative technologies adapt to a new working environment, working in teams and using collaborative technologies for learning. Collaborative Technologies were used not simply for delivery of learning but innovatively to supplement and enrich research-based learning, providing a space for active engagement and interaction with resources and team. This promotes the development of responsive ‘intellectual producers’, able to effectively communicate, collaborate and negotiate in complex work environments. Exploiting technologies. Students use ‘new’ technologies to work collaboratively, allowing them to experience the reality of distributed workplaces incorporating both flexibility and ‘real’ time responsiveness. Students are responsible and accountable for individual and group work contributions in a highly transparent and readily accessible workspace. This experience provides a model of an effective learning tool. Navigating uncertainty and complexity. Collaborative technologies allows students to develop critical thinking and reflective skills as they develop a group product. In this forum students build resilience by taking ownership and managing group work, and navigating the uncertainties and complexities of group dynamics as they constructively and professionally engage in team dialogue and learn to focus on the goal of the team task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctoral studies focused on the development of new materials for efficient use of solar energy for environmental applications. The research investigated the engineering of the band gap of semiconductor materials to design and optimise visible-light-sensitive photocatalysts. Experimental studies have been combined with computational simulation in order to develop predictive tools for a systematic understanding and design on the crystal and energy band structures of multi-component metal oxides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pt ions-CeO2 interaction in Ce1-xPtxO2-delta (x=0.02) has been studied for the first time by electrochemical method combined with x-ray diffraction and x-ray photoelectron spectroscopy. Working electrodes made of CeO2 and Ce0.98Pt0.02O2-delta mixed with 30% carbon are treated electrochemically between 0.0-1.2 V in potentiostatic (chronoamperometry) and potentiodynamic (cyclic voltametry) mode with reference to saturated calomel electrode. Reversible oxidation of Pt-0 to Pt2+ and Pt4+ state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce4+ to Ce3+ state. CeO2 reduces to CeO2-y (y=0.35) after applying 1.2 V, which is not reversible; Ce0.98Pt0.02O2-delta reaches a steady state with Pt2+:Pt4+ in the ratio of 0.60:0.40 and Ce4+:Ce3+ in the ratio of 0.55:0.45 giving a composition Ce0.98Pt0.02O1.74 at 1.2 V, which is reversible. Composition of Pt ion substituted compound is reversible between Ce0.98Pt0.02O1.95 to Ce0.98Pt0.02O1.74 within the potential range of 0.0-1.2 V. Thus, Ce0.98Pt0.02O2-delta forms a stable electrode for oxidation of H2O to O-2 unlike CeO2. A linear relation between oxidation of Pt2+ to Pt4+ with simultaneous reduction in Ce4+ to Ce3+ is observed demonstrating Pt-CeO2 metal support interaction is due to reversible Pt-0/Pt2+/Pt4+ interaction with Ce4+/Ce3+ redox couple.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In closed-die forging the flash geometry should be such as to ensure that the cavity is completely filled just as the two dies come into contact at the parting plane. If metal is caused to extrude through the flash gap as the dies approach the point of contact — a practice generally resorted to as a means of ensuring complete filling — dies are unnecessarily stressed in a high-stress regime (as the flash is quite thin and possibly cooled by then), which reduces the die life and unnecessarily increases the energy requirement of the operation. It is therefore necessary to carefully determine the dimensions of the flash land and flash thickness — the two parameters, apart from friction at the land, which control the lateral flow. The dimensions should be such that the flow into the longitudinal cavity is controlled throughout the operation, ensuring complete filling just as the dies touch at the parting plane. The design of the flash must be related to the shape and size of the forging cavity as the control of flow has to be exercised throughout the operation: it is possible to do this if the mechanics of how the lateral extrusion into the flash takes place is understood for specific cavity shapes and sizes. The work reported here is part of an ongoing programme investigating flow in closed-die forging. A simple closed shape (no longitudinal flow) which may correspond to the last stages of a real forging operation is analysed using the stress equilibrium approach. Metal from the cavity (flange) flows into the flash by shearing in the cavity in one of the three modes considered here: for a given cavity the mode with the least energy requirement is assumed to be the most realistic. On this basis a map has been developed which, given the depth and width of the cavity as well as the flash thickness, will tell the designer of the most likely mode (of the three modes considered) in which metal in the cavity will shear and then flow into the flash gap. The results of limited set of experiments, reported herein, validate this method of selecting the optimum model of flow into the flash gap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wedge shape is a fairly common cross-section found in many non-axisymmetric components used in machines, aircraft, ships and automobiles. If such components are forged between two mutually inclined dies the metal displaced by the dies flows into the converging as well as into the diverging channels created by the inclined dies. The extent of each type of flow (convergent/divergent) depends on the die—material interface friction and the included die angle. Given the initial cross-section, the length as well as the exact geometry of the forged cross-section are therefore uniquely determined by these parameters. In this paper a simple stress analysis is used to predict changes in the geometry of a wedge undergoing compression between inclined platens. The flow in directions normal to the cross-section is assumed to be negligible. Experiments carried out using wedge-shaped lead billets show that, knowing the interface friction and as long as the deformation is not too large, the dimensional changes in the wedge can be predicted with reasonable accuracy. The predicted flow behaviour of metal for a wide range of die angles and interface friction is presented: these characteristics can be used by the die designer to choose the die lubricant (only) if the die angle is specified and to choose both of these parameters if there is no restriction on the exact die angle. The present work shows that the length of a wedge undergoing compression is highly sensitive to die—material interface friction. Thus in a situation where the top and bottom dies are inclined to each other, a wedge made of the material to be forged could be put between the dies and then compressed, whereupon the length of the compressed wedge — given the degree of compression — affords an estimate of the die—material interface friction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With many innovations in process technology, forging is establishing itself as a precision manufacturing process: as forging is used to produce complex shapes in difficult materials, it requires dies of complex configuration of high strength and of wear-resistant materials. Extensive research and development work is being undertaken, internationally, to analyse the stresses in forging dies and the flow of material in forged components. Identification of the location, size and shape of dead-metal zones is required for component design. Further, knowledge of the strain distribution in the flowing metal indicates the degree to which the component is being work hardened. Such information is helpful in the selection of process parameters such as dimensional allowances and interface lubrication, as well as in the determination of post-forging operations such as heat treatment and machining. In the presently reported work the effect of aperture width and initial specimen height on the strain distribution in the plane-strain extrusion forging of machined lead billets is observed: the distortion of grids inscribed on the face of the specimen gives the strain distribution. The stress-equilibrium approach is used to optimise a model of flow in extrusion forging, which model is found to be effective in estimating the size of the dead-metal zone. The work carried out so far indicates that the methodology of using the stress-equilibrium approach to develop models of flow in closed-die forging can be a useful tool in component, process and die design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MIPS (metal interactions in protein structures) is a database of metals in the three-dimensional acromolecular structures available in the Protein Data Bank. Bound metal ions in proteins have both catalytic and structural functions. The proposed database serves as an open resource for the analysis and visualization of all metals and their interactions with macromolecular (protein and nucleic acid) structures. MIPS can be searched via a user-friendly interface, and the interactions between metals and protein molecules, and the geometric parameters, can be viewed in both textual and graphical format using the freely available graphics plug-in Jmol. MIPS is updated regularly, by means of programmed scripts to find metal-containing proteins from newly released protein structures. The database is useful for studying the properties of coordination between metals and protein molecules. It also helps to improve understanding of the relationship between macromolecular structure and function. This database is intended to serve the scientific community working in the areas of chemical and structural biology, and is freely available to all users, around the clock, at http://dicsoft2.physics.iisc.ernet.in/mips/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organocatalysis, the use of organic molecules as catalysts, is attracting increasing attention as one of the most modern and rapidly growing areas of organic chemistry, with countless research groups in both academia and the pharmaceutical industry around the world working on this subject. The literature review of this thesis mainly focuses on metal-free systems for hydrogen activation and organocatalytic reduction. Since these research topics are relatively new, the literature review also highlights the basic principles of the use of Lewis acid-Lewis base pairs, which do not react irreversibly with each other, as a trap for small molecules. The experimental section progresses from the first observation of the facile heterolytical cleavage of hydrogen gas by amines and B(C6F5)3 to highly active non-metal catalysts for both enantioselective and racemic hydrogenation of unsaturated nitrogen-containing compounds. Moreover, detailed studies of structure-reactivity relationships of these systems by X-ray, neutron diffraction, NMR methods and quantum chemical calculations were performed to gain further insight into the mechanism of hydrogen activation and hydrogenation by boron-nitrogen compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constitutive flow behavior of a metal matrix composite (MMC) with 2124 aluminum containing 20 vol pct silicon carbide particulates under hot-working conditions in the temperature range of 300 °C to 550 °C and strain-rate range of 0.001 to 1 s-1 has been studied using hot compression testing. Processing maps depicting the variation of the efficiency of power dissipation given by [2m/(m + 1)] (wherem is the strain-rate sensitivity of flow stress) with temperature and strain rate have been established for the MMC as well as for the matrix material. The maps have been interpreted on the basis of the Dynamic Materials Model (DMM). [3] The MMC exhibited a domain of superplasticity in the temperature range of 450 °C to 550 °C and at strain rates less than 0.1 s-1. At 500 °C and 1 s-1 strain rate, the MMC undergoes dynamic recrystallization (DRX), resulting in a reconstitution of microstructure. In comparison with the map for the matrix material, the DRX domain occurred at a strain rate higher by three orders of magnitude. At temperatures lower than 400 °C, the MMC exhibited dynamic recovery, while at 550 °C and 1 s-1, cracking occurred at the prior particle boundaries (representing surfaces of the initial powder particles). The optimum temperature and strain-rate combination for billet conditioning of the MMC is 500 °C and 1 s-1, while secondary metalworking may be done in the super- plasticity domain. The MMC undergoes microstructural instability at temperatures lower than 400 °C and strain rates higher than 0.1 s-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents concepts, designs, and working prototypes of enhanced laparoscopic surgical tools. The enhancements are in equipping the tool with force and temperature sensing as well as image acquisition for stereo vision. Just as the pupils of our eyes are adequately spaced out and the distance between them is adjustable, two minute cameras mounted on a mechanism in our design can be moved closer or farther apart inside the inflated abdomen during the surgery. The cameras are fitted to a deployable mechanism consisting of flexural joints so that they can be inserted through a small incision and then deployed and moved as needed.A temperature sensor and a force sensor are mounted on either of the gripping faces of the surgical grasping tool to measure the temperature and gripping force, which need to be controlled for safe laparoscopic surgery. The sensors are small enough and hence they do not cause interference during surgery and insertion.Prototyping and working of the enhanced laparoscopic tool are presented with details

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report of the Higgs working group for the Workshop "Physics at TeV Colliders", Les Houches, France 8-18 June 1999. It contains 6 separate sections: 1. Measuring Higgs boson couplings at the LHC. 2. Higgs boson production at hadron colliders at NLO. 3. Signatures of Heavy Charged Higgs Bosons at the LHC. 4. Light stop effects and Higgs boson searches at the LHC. 5. Double Higgs production at TeV Colliders in the MSSM. 6. Programs and Tools for Higgs Bosons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined electrochemical method and X-ray photo electron spectroscopy (XPS) has been utilized to understand the Pd(2+)/CeO(2) interaction in Ce(1-x)Pd(x)O(2-delta) (x = 0.02). A constant positive potential (chronoamperometry) is applied to Ce(0.98)Pd(0.02)O(2-delta) working electrode which causes Ce(4+) to reduce to Ce(3+) to the extent of similar to 35%, while Pd remains in the +2 oxidation state. Electrochemically cycling this electrode between 0.0-1.2 V reverts back to the original state of the catalyst. This reversibility is attributed to the reversible reduction of Ce(4+) to Ce(3+) state. CeO(2) electrode with no metal component reduces to CeO(2-y) (y similar to 0.4) after applying 1.2 V which is not reversible and the original composition of CeO(2) cannot be brought back in any electrochemical condition. During the electro-catalytic oxygen evolution reaction at a constant 1.2 V for 1000 s, Ce(0.98)Pd(0.02)O(2-delta) reaches a steady state composition with Pd in the +2 states and Ce(4+) : Ce(3+) in the ratio of 0.65 : 0.35. This composition can be denoted as Ce(0.63)(4+)Ce(0.35)(4+)Pd(0.02)O(2-delta-y) (y similar to 0.17). When pure CeO(2) is put under similar electrochemical condition, it never reaches the steady state composition and reduces almost to 85%. Thus, Ce(0.98)Pd(0.02)O(2-delta) forms a stable electrode for the electro-oxidation of H(2)O to O(2) unlike CeO(2) due to the metal support interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper(II) and copper(I) complexes of a newly designed and crystallographically characterized Schiff base (HL) derived from rhodamine hydrazide and cinnamaldehyde were isolated in pure form formulated as Cu(L)(NO3)] (L-Cu) (1) and Cu(HL)(CH3CN)(H2O)]ClO4 (HL-Cu) (2), and characterized by physicochemical and spectroscopic tools. Interestingly, complex 1 but not 2 offers red fluorescence in solution state, and eventually HL behaves as a Cu(II) ions selective FRET based fluorosensor in HEPES buffer (1 mM, acetonitrile-water: 1/5, v/v) at 25 degrees C at biological pH with almost no interference of other competitive ions. The dependency of the FRET process on the +2 oxidation state of copper has been nicely supported by exhaustive experimental studies comprising electronic, fluorimetric, NMR titration, and theoretical calculations. The sensing ability of HL has been evaluated by the LOD value towards Cu(II) ions (83.7 nM) and short responsive time (5-10 s). Even the discrimination of copper(I) and copper(II) has also been done using only UV-Vis spectroscopic study. The efficacy of this bio-friendly probe has been determined by employing HL to detect the intercellular distribution of Cu(II) ions in HeLa cells by developing image under fluorescence microscope.