989 resultados para Meshfree particle methods
Resumo:
BACKGROUND Deproteinized bovine bone mineral (DBBM) is one of the best-documented bone substitute materials for sinus floor elevation (SFE). PURPOSE DBBM is available in two particle sizes. Large particles are believed to facilitate improved neoangiogenesis compared with small ones. However, their impact on the rate of new bone formation, osteoconduction, and DBBM degradation has never been reported. In addition, the implant stability quotient (ISQ) has never been correlated to bone-to-implant contact (BIC) after SFE with simultaneous implant placement. MATERIALS AND METHODS Bilateral SFE with simultaneous implant placement was performed in 10 Göttingen minipigs. The two sides were randomized to receive large or small particle size DBBM. Two groups of 5 minipigs healed for 6 and 12 weeks, respectively. ISQ was recorded immediately after implant placement and at sacrifice. Qualitative histological differences were described and bone formation, DBBM degradation, BIC and bone-to-DBBM contact (osteoconduction) were quantified histomorphometrically. RESULTS DBBM particle size had no qualitative or quantitative impact on the amount of newly formed bone, DBBM degradation, or BIC for either of the healing periods (p > 0.05). Small-size DBBM showed higher osteoconduction after 6 weeks than large-size DBBM (p < 0.001). After 12 weeks this difference was compensated. There was no significant correlation between BIC and ISQ. CONCLUSION Small and large particle sizes were equally predictable when DBBM was used for SFE with simultaneous implant placement.
Resumo:
AIMS The aim of the study was to examine whether differences in average diameter of low-density lipoprotein (LDL) particles were associated with total and cardiovascular mortality. METHODS AND RESULTS We studied 1643 subjects referred to coronary angiography, who did not receive lipid-lowering drugs. During a median follow-up of 9.9 years, 398 patients died, of these 246 from cardiovascular causes. We calculated average particle diameters of LDL from the composition of LDL obtained by β-quantification. When LDL with intermediate average diameters (16.5-16.8 nm) were used as reference category, the hazard ratios (HRs) adjusted for cardiovascular risk factors for death from any cause were 1.71 (95% CI: 1.31-2.25) and 1.24 (95% CI: 0.95-1.63) in patients with large (>16.8 nm) or small LDL (<16.5 nm), respectively. Adjusted HRs for death from cardiovascular causes were 1.89 (95% CI: 1.32-2.70) and 1.54 (95% CI: 1.06-2.12) in patients with large or small LDL, respectively. Patients with large LDL had higher concentrations of the inflammatory markers interleukin (IL)-6 and C-reactive protein than patients with small or intermediate LDL. Equilibrium density gradient ultracentrifugation revealed characteristic and distinct profiles of LDL particles in persons with large (approximately even distribution of intermediate-density lipoproteins and LDL-1 through LDL-6) intermediate (peak concentration at LDL-4) or small (peak concentration at LDL-6) average LDL particle diameters. CONCLUSIONS Calculated LDL particle diameters identify patients with different profiles of LDL subfractions. Both large and small LDL diameters are independently associated with increased risk mortality of all causes and, more so, due to cardiovascular causes compared with LDL of intermediate size.
Resumo:
In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1
Resumo:
Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.
Resumo:
ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at √sNN = 2.76 TeV are shown using a dataset of approximately 7μb−1 collected at the LHC in 2010. The measurements are performed for charged particles with transversemomenta 0.5 < pT < 20 GeV and in the pseudorapidity range |η| < 2.5. The anisotropy is characterized by the Fourier coefficients, vn, of the charged-particle azimuthal angle distribution for n = 2–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the vn coefficients are presented. The elliptic flow, v2, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, v3 and v4, are determined with two- and four-particle cumulants. Flow harmonics vn measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to vn measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multiparticle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.
Resumo:
The OPERA experiment, designed to perform the first observation of νμ→ντ oscillations in appearance mode through the detection of the τ leptons produced in ντ charged current interactions, has collected data from 2008 to 2012. In the present paper, the procedure developed to detect τ particle decays, occurring over distances of the order of 1 mm from the neutrino interaction point, is described in detail. The results of its application to the search for charmed hadrons are then presented as a validation of the methods for ντ appearance detection.
Resumo:
Objectives: To investigate substance loss and bond strength capacity of sclerotic, non-carious cervical dentin after airborne-particle abrasion or diamond bur preparation. Methods: Fifteen non-sclerotic dentin specimens were made from crowns of extracted human incisors of which the labial surfaces had been ground with silicon carbide papers (non-sclerotic control; Group 1). Forty-five sclerotic dentin specimens (n=15/group) were made from the labial, non-carious cervical root part of extracted human incisors and underwent either no pre-treatment (sclerotic control; Group 2), pre-treatment with airborne-particle abrasion (CoJet Prep [3M ESPE] and 50 µm aluminium oxide; Group 3), or with diamond bur preparation (40 µm grit size; Group 4). Substance loss after pre-treatment was measured in Groups 3 and 4. Subsequently, Scotchbond Universal (3M ESPE) and resin composite (CeramX [DENTSPLY DeTrey]) were applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Wilcoxon rank sum tests. Results: Substance loss (medians) was 19 µm in Group 3 and 113 µm in Group 4. SBS-values (MPa; medians) in Group 2 (9.24) were significantly lower than in Group 1 (13.15; p=0.0069), Group 3 (13.05; p=0.01), and Group 4 (13.02; p=0.0142). There were no significant differences in SBS between Groups 1, 3, and 4 (p≥0.8063). Conclusion: Airborne-particle abrasion and diamond bur preparation restored bond strength of Scotchbond Universal to sclerotic dentin to the level of non-sclerotic dentin, with airborne-particle abrasion being less invasive than diamond bur preparation.
Resumo:
BACKGROUND Detection of HIV-1 p24 antigen permits early identification of primary HIV infection and timely intervention to limit further spread of the infection. Principally, HIV screening should equally detect all viral variants, but reagents for a standardised test evaluation are limited. Therefore, we aimed to create an inexhaustible panel of diverse HIV-1 p24 antigens. METHODS We generated a panel of 43 recombinantly expressed virus-like particles (VLPs), containing the structural Gag proteins of HIV-1 subtypes A-H and circulating recombinant forms (CRF) CRF01_AE, CRF02_AG, CRF12_BF, CRF20_BG and group O. Eleven 4th generation antigen/antibody tests and five antigen-only tests were evaluated for their ability to detect VLPs diluted in human plasma to p24 concentrations equivalent to 50, 10 and 2 IU/ml of the WHO p24 standard. Three tests were also evaluated for their ability to detect p24 after heat-denaturation for immune-complex disruption, a pre-requisite for ultrasensitive p24 detection. RESULTS Our VLP panel exhibited an average intra-clade p24 diversity of 6.7%. Among the 4th generation tests, the Abbott Architect and Siemens Enzygnost Integral 4 had the highest sensitivity of 97.7% and 93%, respectively. Alere Determine Combo and BioRad Access were least sensitive with 10.1% and 40.3%, respectively. Antigen-only tests were slightly more sensitive than combination tests. Almost all tests detected the WHO HIV-1 p24 standard at a concentration of 2 IU/ml, but their ability to detect this input for different subtypes varied greatly. Heat-treatment lowered overall detectability of HIV-1 p24 in two of the three tests, but only few VLPs had a more than 3-fold loss in p24 detection. CONCLUSIONS The HIV-1 Gag subtype panel has a broad diversity and proved useful for a standardised evaluation of the detection limit and breadth of subtype detection of p24 antigen-detecting tests. Several tests exhibited problems, particularly with non-B subtypes.
Resumo:
We develop statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles. We focus on the case where particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle shape and orientation, and we derive stereological estimators of the tensors. These estimators are combined to provide consistent estimators of the moments of the so-called particle cover density. The covariance structure associated with the particle cover density depends on the orientation and shape of the particles. For instance, if the distribution of the typical particle is invariant under rotations, then the covariance matrix is proportional to the identity matrix. We develop a non-parametric test for such isotropy. A flexible Lévy-based particle model is proposed, which may be analysed using a generalized method of moments in which the volume tensors enter. The developed methods are used to study the cell organization in the human brain cortex.
Resumo:
Passive positioning systems produce user location information for third-party providers of positioning services. Since the tracked wireless devices do not participate in the positioning process, passive positioning can only rely on simple, measurable radio signal parameters, such as timing or power information. In this work, we provide a passive tracking system for WiFi signals with an enhanced particle filter using fine-grained power-based ranging. Our proposed particle filter provides an improved likelihood function on observation parameters and is equipped with a modified coordinated turn model to address the challenges in a passive positioning system. The anchor nodes for WiFi signal sniffing and target positioning use software defined radio techniques to extract channel state information to mitigate multipath effects. By combining the enhanced particle filter and a set of enhanced ranging methods, our system can track mobile targets with an accuracy of 1.5m for 50% and 2.3m for 90% in a complex indoor environment. Our proposed particle filter significantly outperforms the typical bootstrap particle filter, extended Kalman filter and trilateration algorithms.
Resumo:
In the present paper, we describe new robust methods of estimating cell shape and orientation in 3D from sections. The descriptors of 3D cell shape and orientation are based on volume tensors which are used to construct an ellipsoid, the Miles ellipsoid, approximating the average cell shape and orientation in 3D. The estimators of volume tensors are based on observations in several optical planes through sampled cells. This type of geometric sampling design is known as the optical rotator. The statistical behaviour of the estimator of the Miles ellipsoid is studied under a flexible model for 3D cell shape and orientation. In a simulation study, the lengths of the axes of the Miles ellipsoid can be estimated with CVs of about 2% if 100 cells are sampled. Finally, we illustrate the use of the developed methods in an example, involving neurons in the medial prefrontal cortex of rat.
Resumo:
Over the last years, the interest in proton radiotherapy is rapidly increasing. Protons provide superior physical properties compared with conventional radiotherapy using photons. These properties result in depth dose curves with a large dose peak at the end of the proton track and the finite proton range allows sparing the distally located healthy tissue. These properties offer an increased flexibility in proton radiotherapy, but also increase the demand in accurate dose estimations. To carry out accurate dose calculations, first an accurate and detailed characterization of the physical proton beam exiting the treatment head is necessary for both currently available delivery techniques: scattered and scanned proton beams. Since Monte Carlo (MC) methods follow the particle track simulating the interactions from first principles, this technique is perfectly suited to accurately model the treatment head. Nevertheless, careful validation of these MC models is necessary. While for the dose estimation pencil beam algorithms provide the advantage of fast computations, they are limited in accuracy. In contrast, MC dose calculation algorithms overcome these limitations and due to recent improvements in efficiency, these algorithms are expected to improve the accuracy of the calculated dose distributions and to be introduced in clinical routine in the near future.
Resumo:
Magnetic iron minerals are widespread and indicative sediment constituents in estuarine, coastal and shelf systems. We combine environmental magnetic, sedimentological and numerical methods to identify magnetite-enriched placer-like zones in a complex coastal system and delineate their formation mechanisms. Magnetic susceptibility and remanence measurements on 245 surficial sediment samples collected in and around Tauranga Harbour, the largest barrier-enclosed tidal estuary of New Zealand, reveal several discrete enrichment zones controlled by local hydrodynamic conditions. Active magnetite enrichment takes place in tidal channels, which feed into two coast-parallel nearshore magnetite-enriched belts centered at water depths of 6-10 m and 10-20 m. A close correlation between magnetite content and magnetic grain size was found, where higher susceptibility values are associated within coarser magnetic crystal sizes. Two key mechanisms for magnetite enrichment are identified. First, tide-induced residual currents primarily enable magnetite enrichment within the estuarine channel network. A coast-parallel, fine sand magnetite enrichment belt in water depths of less than 10 m along the barrier island has a strong decrease in magnetite content away from the southern tidal inlet and is apparently related to active coast-parallel transport combined with mobilizing surf zone processes. A second, less pronounced, but more uniform magnetite enrichment belt at 10-20 m water depth is composed of non-mobile, medium-coarse-grained relict sands, which have been reworked during post-glacial sea level transgression. We demonstrate the potential of magnetic methods to reveal and differentiate coastal magnetite enrichment patterns and investigate their formative mechanisms.
Resumo:
The objective of this thesis is the development of cooperative localization and tracking algorithms using nonparametric message passing techniques. In contrast to the most well-known techniques, the goal is to estimate the posterior probability density function (PDF) of the position of each sensor. This problem can be solved using Bayesian approach, but it is intractable in general case. Nevertheless, the particle-based approximation (via nonparametric representation), and an appropriate factorization of the joint PDFs (using message passing methods), make Bayesian approach acceptable for inference in sensor networks. The well-known method for this problem, nonparametric belief propagation (NBP), can lead to inaccurate beliefs and possible non-convergence in loopy networks. Therefore, we propose four novel algorithms which alleviate these problems: nonparametric generalized belief propagation (NGBP) based on junction tree (NGBP-JT), NGBP based on pseudo-junction tree (NGBP-PJT), NBP based on spanning trees (NBP-ST), and uniformly-reweighted NBP (URW-NBP). We also extend NBP for cooperative localization in mobile networks. In contrast to the previous methods, we use an optional smoothing, provide a novel communication protocol, and increase the efficiency of the sampling techniques. Moreover, we propose novel algorithms for distributed tracking, in which the goal is to track the passive object which cannot locate itself. In particular, we develop distributed particle filtering (DPF) based on three asynchronous belief consensus (BC) algorithms: standard belief consensus (SBC), broadcast gossip (BG), and belief propagation (BP). Finally, the last part of this thesis includes the experimental analysis of some of the proposed algorithms, in which we found that the results based on real measurements are very similar with the results based on theoretical models.
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.