957 resultados para Media Effects
Resumo:
Objective: To investigate the association between common carotid artery intima-media thickness (cIMT) and exposure to secondhand smoke (SHS) in children. Methods: Data were available at baseline in the Quebec Adiposity and Lifestyle investigation in Youth (QUALITY) study, an ongoing longitudinal investigation of Caucasian children aged 8e10 years at cohort inception, who had at least one obese parent. Data on exposure to parents, siblings and friends smoking were collected in interviewer-administered child, and self-report parent questionnaires. Blood cotinine was measured with a high sensitivity ELISA. cIMTwas measured by ultrasound. The association between blood cotinine and cIMT was investigated in multivariable linear regression analyses controlling for age, body mass index, and child smoking status. Results: Mean (SD) cIMT (0.5803 (0.04602)) did not differ across age or sex. Overall 26%, 6% and 3% of children were exposed to parents, siblings and friends smoking, respectively. Cotinine ranged from 0.13 ng/ml to 7.38 ng/ml (median (IQR)¼0.18 ng/ml)). Multivariately, a 1 ng/ml increase in cotinine was associated with a 0.090 mm increase in cIMT (p¼0.034). Conclusion: In children as young as age 8e10 years, exposure to SHS relates to cIMT, a marker of pre-clinical atherosclerosis. Given the wide range of health effects of SHS, increased public health efforts are needed to reduced exposure among children in homes an private vehicles.
Resumo:
A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modulation consists of a spatial variation of the local front velocity in the transverse direction to that of the front propagation. We study analytically and numerically the final steady-state velocity and shape of the front, resulting from a nontrivial interplay between the local curvature effects and the global competition process between different maxima of the control parameter. The transient dynamics of the process is also studied numerically and analytically by means of singular perturbation techniques.
Resumo:
By simulations of the Barkley model, action of uniform periodic nonresonant forcing on scroll rings and wave turbulence in three-dimensional excitable media is investigated. Sufficiently strong rapid forcing converts expanding scroll rings into the collapsing ones and suppresses the Winfree turbulence caused by the negative tension of wave filaments. Slow strong forcing has an opposite effect, leading to expansion of scroll rings and induction of the turbulence. These effects are explained in the framework of the phenomenological kinematic theory of scroll waves.
Resumo:
A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.
Resumo:
The aim of these studies was to investigate whether residual toxic effects of exposing soybean root nodule bacteria to Al in a solid defined media (SDM) alter tolerance to Al, survival, sensitivity to antibiotics, N2 fixation effectiveness and genetic diversity of Bradyrhizobium strains. After being exposed four times to Al, strains showed variation in Al tolerance but there was no evidence of change in their original Al tolerance, sensitivity to the antibiotics or genetic diversity. Exposure of Bradyrhizobium strains to SDM plus Al did not alter biological N2 fixation effectiveness of five strains. Strain SEMIA 587 showed a reduction in its N2 fixation effectiveness but it seems that it was just a superficial toxic effect because one single passage through the plant eliminated this effect. Residual Al did not cause increases in Al tolerance and reductions in the survival and N2 fixation effectiveness of Bradyrhizobium strains USDA 143, SEMIA 586, SEMIA 5019, SEMIA 5039 and SEMIA 5073. It also did not alter the resistance to antibiotics of strains USDA 143, SEMIA 5039 and SEMIA 5073, and the genetic diversity of the strains SEMIA 587 and SEMIA 5019.
Resumo:
The demyelinative potential of the cytokines interleukin-1 alpha (IL-1 alpha), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) has been investigated in myelinating aggregate brain cell cultures. Treatment of myelinated cultures with these cytokines resulted in a reduction in myelin basic protein (MBP) content. This effect was additively increased by anti-myelin/oligodendrocyte glycoprotein (alpha-MOG) in the presence of complement. Qualitative immunocytochemistry demonstrated that peritoneal macrophages, added to the fetal telencephalon cell suspensions at the start of the culture period, successfully integrated into aggregate cultures. Supplementing the macrophage component of the cultures in this fashion resulted in increased accumulation of MBP. The effect of IFN-gamma on MBP content of cultures was not affected by the presence of macrophages in increased numbers.
Resumo:
Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.
Resumo:
Transport in small-scale biological and soft-matter systems typically occurs under confinement conditions in which particles proceed through obstacles and irregularities of the boundaries that may significantly alter their trajectories. A transport model that assimilates the confinement to the presence of entropic barriers provides an efficient approach to quantify its effect on the particle current and the diffusion coefficient. We review the main peculiarities of entropic transport and treat two cases in which confinement effects play a crucial role, with the appearance of emergent properties. The presence of entropic barriers modifies the mean first-passage time distribution and therefore plays a very important role in ion transport through micro- and nano-channels. The functionality of molecular motors, modeled as Brownian ratchets, is strongly affected when the motor proceeds in a confined medium that may constitute another source of rectification. The interplay between ratchet and entropic rectification gives rise to a wide variety of dynamical behaviors, not observed when the Brownian motor proceeds in an unbounded medium. Entropic transport offers new venues of transport control and particle manipulation and new ways to engineer more efficient devices for transport at the nanoscale.
Resumo:
The objective of this study was to evaluate the effects of 6-benzylaminopurine (BAP) and α-naphthaleneacetic acid (NAA) combinations, basal media and beta-lactam antibiotics on in vitro organogenesis from mature stem segments of 'Pêra', 'Valência' and 'Bahia' sweet oranges and 'Cravo' rangpur lime. For induction of shoot regeneration, the segments of the four cultivars were placed on Murashige and Skoog (MS) medium containing the following BAP/NAA concentrations: 0.0/0.0; 0.25/0.0; 0.25/0.25; 0.5/0.0; 0.5/0.5; 1.0/0.0; 2.0/0.0; 2.0/0.25; 2.0/0.5; and 2.0/1.0 mg L-1. In order to test the influence of the culture media on shoot-bud induction, (MS), Murashige and Tucker (MT), and woody plant medium (WPM) formulations were evaluated, associated with the best combination of plant growth regulators obtained in the previous experiment. The influence of four beta-lactam antibiotics (timentin, cefotaxime sodium salt, meropenem trihydrate and augmentin) on shoot regeneration was determined. Better regeneration responses were achieved when internodal segments were cultured onto MS-based medium with 500 mg L-1 cefotaxime with the following BAP/NAA concentrations: 0.5 + 0.25 mg L-1 for 'Cravo', 1.0 + 0.25 mg L-1 for 'Valência' and 'Bahia', and 1.0 + 0.5 mg L-1 for 'Pêra'. Genotype, growth regulators, basal media and beta-lactam antibiotics affect the morphogenetic response in mature tissues of citrus.
Resumo:
Primary cultures of gilthead sea bream myocytes were performed in order to examine the relative metabolic function of insulin compared with IGF-I and IGF-II (insulin-like growth factors, IGFs) at different stages in the cell culture. In these cells, the in vitro effects of insulin and IGFs on 2-deoxyglucose (2-DG) and L-alanine uptake were studied in both myocytes (day 4) and small myotubes (day 9). 2-DG uptake in gilthead sea bream muscle cells was increased in the presence of insulin and IGFs in a time dependent manner and along with muscle cell differentiation. On the contrary, L-alanine uptake was also stimulated by insulin and IGFs but showed an inverse pattern, being the uptake higher in small myocytes than in large myotubes. The results of preincubation with inhibitors (PD-98059, wortmannin, and cytochalasin B) on 2-DG uptake indicated that insulin and IGFs stimulate glucose uptake through the same mechanisms, and evidenced that mitogenesis activator protein kinase (MAPK) and PI3K-Akt transduction pathways mediate the metabolic function of these peptides. In the same way, we observed that GLUT4 protein synthesis was stimulated in the presence of insulin and IGFs in gilthead sea bream muscle cells in a different manner at days 4 or 9 of the culture. In summary we describe here, for the first time, the effects of insulin and IGFs on 2-DG and L-alanine uptake in primary culture of gilthead sea bream muscle cells. We show that both MAPK and PI3K-Akt transduction pathways are needed in order to control insulin and IGFs actions in these cells. Moreover, changes in glucose uptake can be explained by the action of the GLUT4 transporter, which is stimulated in the presence of insulin and IGFs throughout the cell culture.
Resumo:
Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T-cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of Th2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions
Resumo:
Objective:To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality.Materials and Methods:Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration.Results:As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions.Conclusion:Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography.
Resumo:
This work gives a reader basic knowledge about mineralogy and mineral processing. Main focus of this work was on flotation process and pulp electrochemistry on flotation. Three different sulphide poor ores are examined on experimental part. Platinum and palladium were the noble metals, which were contained into studied ores. Electrochemistry of flotation of PGE minerals on sulphide poor ores has been examined only slightly. Bench scale flotation test was used in this study. Chalcopyrite, nickel-pentlandite, pyrite, platinum and pH electrodes were used to investigation of pulp electrochemistry during flotation tests. Effects of grinding media, carbon dioxide atmosphere in grinding and mixture of carbon dioxide and air as flotation gas to PGE flotation and electrochemistry of flotation were studied. Stainless steel grinding media created more oxidising pulp environment to flotation than mild steel grinding media. Concentrate quality improved also with stainless steel grinding media, but the recovery was remarkably poorer, than with mild steel grinding media. Carbon dioxide atmosphere in grinding created very reducing pulp environment, which caused very good concentrate quality. But the recovery was again poorer than with normal mild steel grinding media. Mixture of carbon dioxide and air as flotation gas improved PGE recovery with some ores, but not always. Effect of carbon dioxide to pulp electrochemistry was detected mainly via pH-value.
Resumo:
Cocoa consumption began in America and in the mid sixteenth Century it quickly spread to Europe. Beyond being considered a pleasant habit due to its rich sweet lingering taste, chocolate was considered a good nutrient and even a medicine. Traditionally, health benefits of cocoa have been related with the high content of antioxidants of Theobroma cocoa beans. However, the direct psychoactive effect due to methylxanthines in cocoa is notable. Theobromine and caffeine, in the proportions found in cocoa, are responsible for the liking of the food/beverage. These compounds influence in a positive way our moods and our state of alertness. Theobromine, which is found in higher amounts than caffeine, seems to be behind several effects attributed to cocoa intake. The main mechanisms of action are inhibition of phosphodiesterases and blockade of adenosine receptors. Further mechanisms are being explored to better understand the health benefits associated to theobromine consumption. Unlike what happens in other mammals -pets- included, theobromine is safe for humans and has fewer unwanted effects than caffeine. Therefore, theobromine deserves attention as one of the most attractive molecules in cocoa.
Resumo:
For the past two decades the music digitalization has been considered the most significant phenomenon in the music industry as the physical sales have been decreasing rapidly. The advancement of the digital technology and the internet have facilitated the digitalization in the music industry and affected all stages of the music value chain, namely music creation, distribution and consumption. The newly created consumer culture has led to the establishment of novel business models such as music subscriptions and à-la-carte downloads websites and live streaming. The dynamic digital environment has presented the music industry stakeholders with the challenge to adapt to the requirements of the constantly changing modern consumers’ needs and demands. The purpose of this study was to identify how music digitalization can influence change in the Finnish music industry value chain; i.e. how digitalization affects the music industry stakeholders, their functions and inter-relatedness and how the stakeholders are able to react to the changes in the industry. The study was conducted as a qualitative research based entirely on primary data in the form of semi-structured interviews with experts from different units of the Finnish music industry value chain. Since the study offers assessment of diverse viewpoints on the value chain, it further provides an integrated picture of the Finnish music industry current situation and its competitive environment. The results suggest that the music industry is currently in a turbulent stage of experimentation with new business models and digital innovations. However, at this point it is impossible to determine which business model will be approved by the consumers in the longer run. Nevertheless, the study confirmed the claim that consumption of music in its digital form is to become dominant over the traditional physical copies sales in the nearest future. As a result the music industry is becoming more user-oriented; that is the focus is shifting from music production towards artist branding and management and visibility to the audience. Furthermore, the music industry is undergoing the process of integration with other industries such as media, social networks, internet services providers and mobile phone manufacturers in order to better fulfill the consumers’ needs. The previously underrated live music and merchandising are also increasing their significance for the revenues in the stagnant music markets. Therefore, the music industry is developing at present towards becoming an integrated entertainment industry deeply penetrating every point of modern people’s leisure activities.