994 resultados para Mechanical drawing
Resumo:
Contemporary critiques on early years education highlight a call for the need to implement teaching and learning strategies that are less managing, that emerge from equity and inclusivity agendas, and that recognise diversity and plurality in early years learning contexts. Such critiques raise a need to reconsider the ways we engage as adults with children, and to rethink how we might review these relational subjectivities in respect to teaching and learning. This paper focuses on some aspects of a pilot research study into collaborative drawing in order to discuss ideas about socially inclusive early childhood pedagogies.
Resumo:
This paper presents a preliminary study into collaborated processes for art-making, undertaken by a young child and an adult. The study explores collaborative drawing in the context of sociocultural research into early childhood education. The study particularly examines whether childhood techniques for making marks, creative processing and art-making could be ‘re-learned’ by the adult, while new opportunities for expanding on extant repertoire could be available to the child. In this context the child teaches and learns from the adult, and the adult teaches and learns from the child. The study utilised video-data-recording to facilitate microanalysis of the researchers in action, enabling the adult researcher to present a discourse into the dynamics of how the visual, mark-making repertoires of an adult and child can be co-developed. Preliminary findings help contribute to the various discourses available into sociocultural research that supports processes for exploring and making art, and which allows a challenge to the role of the adult educator as a provider or director of what is learned.
Resumo:
This article is a study of the arts in early childhood as a way of learning, for both children and their teachers. The author suggests that drawing can be a powerful tool for collaborative approaches to pedagogy. When teachers draw with children, pathways of communication can be opened, and the collaborative exercise can trigger processes of transformation for both adult and child. In order to present challenges to more traditional, hands-off pedagogical practices in arts education, this article is an account of reflexive arts pedagogies, and how they can work to improve communication and understandings between adults and children. Within the educational contexts of Australian preschooling and primary schooling, the author examines the process of collaborative drawing, and how this can enable a process of transformation. Her analysis, and the accompanying examples of reflexive practices, combine complementary lenses, socio-cultural and postmodern, that she sees as working in harmony to produce new possibilities, in arts education in particular, and, more broadly, in early childhood education.
Resumo:
Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of copper nanowire with different crystallographic orientations, under tensile deformation. Three different crystallographic orientations have been considered. The deformation mechanism has been carefully discussed. It is found that the Young’s modulus is insensitive to the defect, even when the nanowire’s crystallographic orientation is different. However, due to the defect’s effect, the yield strength and yield strain appear a large decrease. The defects have played a role of dislocation sources, the slips or stacking faults are first generated around the locations of the defects. The necking locations have also been affected by different defects. Due to the surface defect, the plastic deformation has received a large influence for the <001>/{110} and <110> orientated nanowires, and a relative small influence is seen for the <111> nanowire.
Resumo:
Mechanical properties have an important role in the fire safety design of cold-formed steel structures due to the rapid reduction in mechanical properties such as yield strength and elastic modulus under fire conditions and associated reduction to the load carrying capacities. Hence there is a need to fully understand the deterioration characteristics of yield strength and elastic modulus of cold-formed steels at elevated temperatures. Although past research has produced useful experimental data on the mechanical properties of cold-formed steels at elevated temperatures, such data do not yet cover different cold-formed steel grades and thicknesses. Therefore, an experimental study was undertaken to investigate the elevated temperature mechanical properties of two low and high strength steels with two thicknesses that are commonly used in Australia. Tensile coupon tests were undertaken using a steady state test method for temperatures in the range 20–700 °C. Test results were compared with the currently available reduction factors for yield strength and elastic modulus, and stress–strain curves, based on which further improvements were made. For this purpose, test results of many other cold-formed steels were also used based on other similar studies undertaken at the Queensland University of Technology. Improved equations were developed to predict the yield strength and elastic modulus reduction factors and stress–strain curves of a range of cold-formed steel grades and thicknesses used in Australia. This paper presents the results of this experimental study, comparisons with the results of past research and steel design standards, and the new predictive equations.