969 resultados para Mechanical Components
Resumo:
The modification of ethylene-propylene copolymer (EPM) has been accomplished by melt grafting of maleic anhydride (MAH) molecules promoted by radical initiators. The resulting EPM-g-MAH and EPM have been used to obtain binary nylon 1010/EPM or nylon 1010/EPM-g-MAH blends by melt mixing. It was found that the EPM-g-MAH copolymer used as the second component has a profound effect upon the properties of the resulting blends. This behavior has been attributed to a series of chemical and physicochemical interactions taking place between the two components. The interactions are due to the presence of the anhydride functionality on the copolymer and do not occur when this functionality is absent. The interaction has been confirmed by Fourier-transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopic.
Resumo:
The morphology and dynamic mechanical properties of blends of poly(ether imide) (PEI) and nylon 66 over the full composition range have been investigated. Torque changes during mixing were also measured. Lower torque values than those calculated by the log-additivity rule were obtained, resulting from the slip at the interface due to low interaction between the components. The particle size of the dispersed phase and morphology of the blends were examined by scanning electron microscopy. The composition of each phase was calculated. The blends of PEI and nylon 66 showed phase-separated structures with small spherical domains of 0.3 similar to 0.7 mu m. The glass transition temperatures (T(g)s) of the blends were shifted inward, compared with those of the homopolymers, which implied that the blends were partially miscible over a range of compositions. T-g1, corresponding to PEI-rich phase, was less affected by composition than T-g2, corresponding to nylon 66-rich phase. This indicated that the fraction of PEI mixed into nylon 66-rich phase increased with decreasing PEI content and that nylon 66 was rarely mixed into the PEI-rich phase. The effect of composition on the secondary relaxations was examined. Both T-beta, corresponding to the motion of amide groups in nylon 66, and T-gamma, corresponding to that of ether groups in PEI, were shifted to higher temperature, probably because of the formation of intermolecular interactions between the components.
Resumo:
Morphology and mechanical properties of polypropylene (PP)/high density polyethylene (HDPE) blends modified by ethylene-propylene copolymers (EPC) with residual PE crystallinity were investigated. The EPC showed different interfacial behavior in PP/HDPE blends of different compositions. A 25/75 blend of PP/HDPE (weight ratio) showed improved tensile strength and elongation at break at low EPC content (5 wt %). For the PP/HDPE = 50/50 blend, the presence of the EPC component tended to make the PP dispersed phase structure transform into a cocontinuous one, probably caused by improved viscosity matching of the two components. Both tensile strength and elongation at break were improved at EPC content of 5 wt %. For PP/HDPE 75/25 blends, the much smaller dispersed HDPE phase and significantly improved elongation at break resulted from compatibilization by EPC copolymers. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Three pairs of polyimide/polyimide blends (50/50 wt%) with different molecular structures were prepared by two ways, i.e. mixing of the polyamic acid precursors with subsequent imidization, and direct solution mixing of the polyimides. The blends were studied with DMA technique. The results obtained show that all the blends prepared with these two different ways are miscible, as there existed only one glass transition temperature(Tg) for all the blends. It is suggested that the miscibility of these polyimide/polyimide blends is a result of the strong inter-molecular charge-transfer interaction between the chains of their components.
Resumo:
Polyoxypropylene glycol (PPG) (or castor oil) and toluene diisocyanate (TDI) were mixed, and the prepolymer polyurethane (PU) (I) was formed. Vinyl-terminated polyurethane (II) was prepared from (I), and hydroxyethyl acrylate, AB crosslinked polymers (ABCPs) were synthesized from (II) and vinyl monomers such as styrene, methyl methacrylate, vinyl acetate, etc. The dynamic mechanical properties and morphology of ABCPs were measured. The ABCPs based on PPG have double glass transition temperatures (T(g)) on the sigma-vs. temperature curves. They display a two-phase morphology with plastic components forming the continous phase and PU-rich domains forming the separated phase on the electron micrographs. Irregular shapes and a highly polydisperse distribution of PU-rich domain sizes were observed. The crosslink density of ABCPs has a notable effect on the morphology and properties. The average diameter of the PU-rich domains depends on the molecular weight of prepolymer PPG. The highly crosslinked structures will produce large numbers of very small domains. ABCPs based on castor oil show a single T(g) relaxation on the dynamic mechanical spectra. The compatibility between the two components is much better in ABCPs based on castor oil than in those based on PPG, because there is a high crosslink density in the former. Comparison of the dynamic mechanical spectra of ABCP and interpenetrating networks (IPN) based on castor oil with similar crosslink density and composition imply that the two components in ABCP are compatible whereas microphase separation occurs in IPN. An improvement in the compatibility is achieved by the crosslinking between the two networks.
Resumo:
The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied, The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were compared with the wear loss in air. The experiment showed that the pure mechanical wear losses and friction coefficients obtained by the three methods were close to each other and can be used to calculate the various wear components in the study of the interaction of corrosion and wear, but the measurements in distilled water for pure iron and 1045 steel are not recommended due to their corrosion.
Resumo:
This paper presents the ideas underlying a program that takes as input a schematic of a mechanical or hydraulic power transmission system, plus specifications and a utility function, and returns catalog numbers from predefined catalogs for the optimal selection of components implementing the design. It thus provides the designer with a high level "language" in which to compose new designs, then performs some of the detailed design process for him. The program is based on a formalization of quantitative inferences about hierarchically organized sets of artifacts and operating conditions, which allows design compilation without the exhaustive enumeration of alternatives.
Resumo:
Among the wide variety of materials employed in the manufacture of shoes, thermoplastic polyurethanes (TPUs) are one of the most widely used. Given its widespread use, and associated waste management problems, the development of more biodegradable and evironmentally compatible solutions is needed. In this work, a polyester-based TPU used in the footwear industry for outsoles production was modified by compounding with lignin, starch and cellulose at content of 4% (w/w). The biodegradability was evaluated by using agar plate tests with the fungi Aspergillus niger ATCC16404, the Gram-negative bacteria Pseudomonas aeruginosa ATCC9027 and an association of both (consortium), and soil tests at 37 °C and 58 °C. The obtained results evidenced a positive effect of the tested biobased additives, the most favourable results being registered with lignin. These results were corroborated by the structural modifications observed by FTIR analysis. Additionally, mechanical tests prove the suitability of using the lignin modified TPUs for footwear outsoles production.
Resumo:
The growth of stem cells can be modulated by physical factors such as extracellular matrix nanotopography. We hypothesize that nanotopography modulates cell behavior by changing the integrin clustering and focal adhesion (FA) assembly, leading to changes in cytoskeletal organization and cell mechanical properties. Human mesenchymal stem cells (hMSCs) cultured on 350 nm gratings of tissue-culture polystyrene (TCPS) and polydimethylsiloxane (PDMS) showed decreased expression of integrin subunits alpha2, alpha , alpha V, beta2, beta 3 and beta 4 compared to the unpatterned controls. On gratings, the elongated hMSCs exhibited an aligned actin cytoskeleton, while on unpatterned controls, spreading cells showed a random but denser actin cytoskeleton network. Expression of cytoskeleton and FA components was also altered by the nanotopography as reflected in the mechanical properties measured by atomic force microscopy (AFM) indentation. On the rigid TCPS, hMSCs on gratings exhibited lower instantaneous and equilibrium Young's moduli and apparent viscosity. On the softer PDMS, the effects of nanotopography were not significant. However, hMSCs cultured on PDMS showed lower cell mechanical properties than those on TCPS, regardless of topography. These suggest that both nanotopography and substrate stiffness could be important in determining mechanical properties, while nanotopography may be more dominant in determining the organization of the cytoskeleton and FAs.
Resumo:
Abstract: New product design challenges, related to customer needs, product usage and environments, face companies when they expand their product offerings to new markets; Some of the main challenges are: the lack of quantifiable information, product experience and field data. Designing reliable products under such challenges requires flexible reliability assessment processes that can capture the variables and parameters affecting the product overall reliability and allow different design scenarios to be assessed. These challenges also suggest a mechanistic (Physics of Failure-PoF) reliability approach would be a suitable framework to be used for reliability assessment. Mechanistic Reliability recognizes the primary factors affecting design reliability. This research views the designed entity as a “system of components required to deliver specific operations”; it addresses the above mentioned challenges by; Firstly: developing a design synthesis that allows a descriptive operations/ system components relationships to be realized; Secondly: developing component’s mathematical damage models that evaluate components Time to Failure (TTF) distributions given: 1) the descriptive design model, 2) customer usage knowledge and 3) design material properties; Lastly: developing a procedure that integrates components’ damage models to assess the mechanical system’s reliability over time. Analytical and numerical simulation models were developed to capture the relationships between operations and components, the mathematical damage models and the assessment of system’s reliability. The process was able to affect the design form during the conceptual design phase by providing stress goals to meet component’s reliability target. The process was able to numerically assess the reliability of a system based on component’s mechanistic TTF distributions, besides affecting the design of the component during the design embodiment phase. The process was used to assess the reliability of an internal combustion engine manifold during design phase; results were compared to reliability field data and found to produce conservative reliability results. The research focused on mechanical systems, affected by independent mechanical failure mechanisms that are influenced by the design process. Assembly and manufacturing stresses and defects’ influences are not a focus of this research.
Resumo:
The electronics industry and the problems associated with the cooling of microelectronic equipment are developing rapidly. Thermal engineers now find it necessary to consider the complex area of equipment cooling at some level. This continually growing industry also faces heightened pressure from consumers to provide electronic product miniaturization, which in itself increases the demand for accurate thermal management predictions to assure product reliability. Computational fluid dynamics (CFD) is considered a powerful and almost essential tool for the design, development and optimization of engineering applications. CFD is now widely used within the electronics packaging design community to thermally characterize the performance of both the electronic component and system environment. This paper discusses CFD results for a large variety of investigated turbulence models. Comparison against experimental data illustrates the predictive accuracy of currently used models and highlights the growing demand for greater mathematical modelling accuracy with regards to thermal characterization. Also a newly formulated low Reynolds number (i.e. transitional) turbulence model is proposed with emphasis on hybrid techniques.
Resumo:
The present work uses the discrete element method (DEM) to describe assemblies of particulate bulk materials. Working numerical descriptions of entire processes using this scheme are infeasible because of the very large number of elements (1012 or more in a moderately sized industrial silo). However it is possible to capture much of the essential bulk mechanics through selective DEM on important regions of an assembly, thereafter using the information in continuum numerical descriptions of particulate processes. The continuum numerical model uses population balances of the various components in bulk solid mixtures. It depends on constitutive relationships for the internal transfer, creation and/or destruction of components within the mixture. In this paper we show the means of generating such relationships for two important flow phenomena – segregation whereby particles differing in some important property (often size) separate into discrete phases, and degradation, whereby particles break into sub-elements, through impact on each other or shearing. We perform DEM simulations under a range of representative conditions, extracting the important parameters for the relevant transfer, creation and/or destruction of particles in certain classes within the assembly over time. Continuum predictions of segregation and degradation using this scheme are currently being successfully validated against bulk experimental data and are beginning to be used in schemes to improve the design and operation of bulk solids process plant.
Resumo:
In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.
Resumo:
In this paper, a couple mechanical-acoustic system of equations is solved to determine the relationship between emitted sound and damage mechanisims in paper under controlled stress conditions. The simple classical expression describing the frequency of a plucked string to its material properties is used to generate a numberical representation of the microscopic structue of the paper, and the resulting numerical model is then used to simulate the vibration of a range of simple fibre structures when undergoing two distinct types of damange mechanisms: (a)fibre/fibre bond failure, (b) fibre failure. The numercial results are analysed to determine whether there is any detectable systematic difference between the resulting acoustic emissions of the two damage processes. Fourier techniques are then used to compare th computeed results against experimental measurements. Distinct frequency components identifying each type of damage are shown to exist, and in this respect theory and experiments show good correspondece. Hence, it is shown, that althrough the mathematical model represents a grossly-simplified view of the complex structure of the paper, it nevertheless provides a good understanding of the underlying micro-mechanisms characterising its proeperties as a stress-resisting structure. Use of the model and acoompanying software will enable operators to identify approaching failure conditions in the continuous production of paper from emitted sound signals and take preventative action.