946 resultados para Mecanica : Fluidos
Resumo:
A presente patente diz respeito a um dispositivo de refrigeração de fluidos de corte interligado em máquinas de usinagem, retificadoras e/ou de corte, visando reduzir a contaminação microbiana dos fluidos de corte, oferecendo, paralelamente, maior poder de refrigeração sobre a peça e a ferramenta de corte, composto por caixa de resfriamento (2) com serpentina em banho de gelo ou um refrigerador de líquidos (2A), depósito do fluido (3), sendo que a caixa de resfriamento e o depósito de fluido são revestidos com material isolante térmico (4) e devidamente interligados por tubos (5).
Resumo:
A presente patente diz respeito a um dispositivo usado para reduzir a contaminação microbian dos fluidos de corte através de raios ultravioletas, o qual c nsiste em um tampo metálico que se adapta ao reservatório (3) de fluido de corte fechando completamente sua face superior, cujo tampo (1) contém lâmpadas (2) ultravioletas germicidas (UV-C), dispostas lado a lado, apresentando, ainda, pequenas janel s (4) para observação dispostas lateralmente e interruptor (5) ara as lâmpadas (2), sendo que os reatores das lâmpadas (2) s o instalados sobre uma chapa metálica (6).
Resumo:
Fluidization consists in a bed of solid particles acquire fluid behavior by using a fluid (in this case air) flowing through the solid particles. Because of this, it can be a good mix of these materials, as well as to show increased rates of heat and mass transport. The fluid flowing through the spaces between the particles gives an interstitial velocity, that if is too low does not cause movement of the particulates. The gradual increase in speed will generate small vibrations between the particles promotes its fluidization. Our study focus in the fluid state of solid bed , when the fluid velocity reaches a state where the drag forces are sufficient to support the weight of the solid particles making these solids behave like fluids . Knowledge of the minimum velocity required to fluidize that particles is of great importance since below this speed there is no fluidization, and far above it, the solids are carried out of the bed. The fluidized bed reactor is widely used in physics and engineering, particularly in gas-solid fluidization, with emphasis on thermochemical processes
Resumo:
Through measurements of basic parameters for determining the fluidization regime, as particle size, minimum fluidization velocity, bed porosity, etc., This paper analyze the mass distribution of the phases of the bed to be discussed in relation to: the flow gas physical properties of the solid particles and the forces acting on the solid particles circulating within the bed, as the weight force, buoyancy and drag forces (Stokes' Law). Due to the weight force is constant, open up the discussion about which of the other two forces, buoyancy and drag force, influencing the behavior of the bed. We used the photographic method to realize the statistical analyzes. Therefore, we can conclude what changes can be made more convenient in fluidizing the bed to obtain the highest efficiency for a good mixing used in industrial processes
Resumo:
The study of movements of ideals fluids is more simple that the viscous fluids because do not have the presence of tension of shear. The normal tensions are the one that must be considered in this analysis. The theory corresponding to these flows is the same used in other fields of the physics called Theory of Potentials Fields, which the vector identity is fundamental. Any flow into irrotational (null vorticity) physically possibly has a current function and a potential of velocity that satisfied the equation of Laplace. Reciprocally, any solution of equation of Laplace represents a current function or a potential of velocity of a flow into physically possible. Once the equation of Laplace is linear, the addiction of any numbers of solutions is also a solution. So, several potentials flows into can be constructed superposing configurations of elementary flows into. The purpose of the superposition of elementary flows into is a production of similar configurations to those of practical interest. The combination of mathematical elegancy with utility in the potential flow into attracted many for its study. Some of the most famous mathematician of history studied the theory and application of “hydrodynamic”, how was called the potential fluid into before 1900
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
A cinomose é uma doença de desafio diagnóstico, especialmente quando não há histórico de vacinação. O objetivo deste estudo foi detectar e quantificar partículas virais de cinomose em diferentes fluidos e tecidos biológicos de um cão, determinando o melhor tecido para diagnóstico viral ante mortem na fase de viremia. Atendeu-se um cão adulto com manifestações clínicas inespecíficas e corpúsculos de Sinegaglia Lentz em linfócitos. Amostras post mortem foram submetidas a PCR em tempo real (qPCR), que demonstrou RNA viral em concentrações de (x105) em líquor (1.216), bexiga (1.009), cérebro (605), sangue (572), cerebelo (523), rins (373), fígado (257), pulmões (191), estômago (154), terceira pálpebra (70) e urina (2,1). A técnica de qPCR permitiu confirmar a infecção pelo vírus, descartando vacinação recente. A amostra de líquor mostrou-se representativa para diagnóstico molecular de fase aguda de cinomose no animal estudado.
Resumo:
The boundary layer over concave surfaces can be unstable due to centrifugal forces, giving rise to Goertler vortices. These vortices create two regions in the spanwise direction—the upwash and downwash regions. The downwash region is responsible for compressing the boundary layer toward the wall, increasing the heat transfer rate. The upwash region does the opposite. In the nonlinear development of the Goertler vortices, it can be observed that the upwash region becomes narrow and the spanwise–average heat transfer rate is higher than that for a Blasius boundary layer. This paper analyzes the influence of the spanwise wavelength of the Goertler the heat transfer. The equation is written in vorticity-velocity formulation. The time integration is done via a classical fourth-order Runge-Kutta method. The spatial derivatives are calculated using high-order compact finite difference and spectral methods. Three different wavelengths are analyzed. The results show that steady Goertler flow can increase the heat transfer rates to values close to the values of turbulence, without the existence of a secondary instability. The geometry (and computation domain) are presented
Resumo:
Apresentação oral em palestra semiplenaria do trabalho "Experiencias virtuales, una herramienta para enseñar mecanica".