928 resultados para Maximum likelihood channel estimation algorithms
Resumo:
This report reviews literature on the rate of convergence of maximum likelihood estimators and establishes a Central Limit Theorem, which yields an O(1/sqrt(n)) rate of convergence of the maximum likelihood estimator under somewhat relaxed smoothness conditions. These conditions include the existence of a one-sided derivative in θ of the pdf, compared to up to three that are classically required. A verification through simulation is included in the end of the report.
Resumo:
Al contrario dei computer classici, i computer quantistici lavorano tramite le leggi della meccanica quantistica, e pertanto i qubit, ovvero l'unità base di informazione quantistica, possiedono proprietà estremamente interessanti di sovrapposizione ed entanglement. Queste proprietà squisitamente quantistiche sono alla base di innumerevoli algoritmi, i quali sono in molti casi più performanti delle loro controparti classiche. Obiettivo di questo lavoro di tesi è introdurre dal punto di vista teorico la logica computazionale quantistica e di riassumere brevemente una classe di tali algoritmi quantistici, ossia gli algoritmi di Quantum Phase Estimation, il cui scopo è stimare con precisione arbitraria gli autovalori di un dato operatore unitario. Questi algoritmi giocano un ruolo cruciale in vari ambiti della teoria dell'informazione quantistica e pertanto verranno presentati anche i risultati dell'implementazione degli algoritmi discussi sia su un simulatore che su un vero computer quantistico.
Resumo:
The objective of this work was to compare the soybean crop mapping in the western of Parana State by MODIS/Terra and TM/Landsat 5 images. Firstly, it was generated a soybean crop mask using six TM images covering the crop season, which was used as a reference. The images were submitted to Parallelepiped and Maximum Likelihood digital classification algorithms, followed by visual inspection. Four MODIS images, covering the vegetative peak, were classified using the Parallelepiped method. The quality assessment of MODIS and TM classification was carried out through an Error Matrix, considering 100 sample points between soybean or not soybean, randomly allocated in each of the eight municipalities within the study area. The results showed that both the Overall Classification (OC) and the Kappa Index (KI) have produced values ranging from 0.55 to 0.80, considered good to very good performances, either in TM or MODIS images. When OC and KI, from both sensors were compared, it wasn't found no statistical difference between them. The soybean mapping, using MODIS, has produced 70% of reliance in terms of users. The main conclusion is that the mapping of soybean by MODIS is feasible, with the advantage to have better temporal resolution than Landsat, and to be available on the internet, free of charge.
Resumo:
A two-component survival mixture model is proposed to analyse a set of ischaemic stroke-specific mortality data. The survival experience of stroke patients after index stroke may be described by a subpopulation of patients in the acute condition and another subpopulation of patients in the chronic phase. To adjust for the inherent correlation of observations due to random hospital effects, a mixture model of two survival functions with random effects is formulated. Assuming a Weibull hazard in both components, an EM algorithm is developed for the estimation of fixed effect parameters and variance components. A simulation study is conducted to assess the performance of the two-component survival mixture model estimators. Simulation results confirm the applicability of the proposed model in a small sample setting. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
HE PROBIT MODEL IS A POPULAR DEVICE for explaining binary choice decisions in econometrics. It has been used to describe choices such as labor force participation, travel mode, home ownership, and type of education. These and many more examples can be found in papers by Amemiya (1981) and Maddala (1983). Given the contribution of economics towards explaining such choices, and given the nature of data that are collected, prior information on the relationship between a choice probability and several explanatory variables frequently exists. Bayesian inference is a convenient vehicle for including such prior information. Given the increasing popularity of Bayesian inference it is useful to ask whether inferences from a probit model are sensitive to a choice between Bayesian and sampling theory techniques. Of interest is the sensitivity of inference on coefficients, probabilities, and elasticities. We consider these issues in a model designed to explain choice between fixed and variable interest rate mortgages. Two Bayesian priors are employed: a uniform prior on the coefficients, designed to be noninformative for the coefficients, and an inequality restricted prior on the signs of the coefficients. We often know, a priori, whether increasing the value of a particular explanatory variable will have a positive or negative effect on a choice probability. This knowledge can be captured by using a prior probability density function (pdf) that is truncated to be positive or negative. Thus, three sets of results are compared:those from maximum likelihood (ML) estimation, those from Bayesian estimation with an unrestricted uniform prior on the coefficients, and those from Bayesian estimation with a uniform prior truncated to accommodate inequality restrictions on the coefficients.
Resumo:
Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms.
Resumo:
Weeds tend to aggregate in patches within fields and there is evidence that this is partly owing to variation in soil properties. Because the processes driving soil heterogeneity operate at different scales, the strength of the relationships between soil properties and weed density would also be expected to be scale-dependent. Quantifying these effects of scale on weed patch dynamics is essential to guide the design of discrete sampling protocols for mapping weed distribution. We have developed a general method that uses novel within-field nested sampling and residual maximum likelihood (REML) estimation to explore scale-dependent relationships between weeds and soil properties. We have validated the method using a case study of Alopecurus myosuroides in winter wheat. Using REML, we partitioned the variance and covariance into scale-specific components and estimated the correlations between the weed counts and soil properties at each scale. We used variograms to quantify the spatial structure in the data and to map variables by kriging. Our methodology successfully captured the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and soil organic matter and clay content were weak and masked the stronger correlations at >50 m. Knowing how the variance was partitioned across the spatial scales we optimized the sampling design to focus sampling effort at those scales that contributed most to the total variance. The methods have the potential to guide patch spraying of weeds by identifying areas of the field that are vulnerable to weed establishment.
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
The use of group-randomized trials is particularly widespread in the evaluation of health care, educational, and screening strategies. Group-randomized trials represent a subset of a larger class of designs often labeled nested, hierarchical, or multilevel and are characterized by the randomization of intact social units or groups, rather than individuals. The application of random effects models to group-randomized trials requires the specification of fixed and random components of the model. The underlying assumption is usually that these random components are normally distributed. This research is intended to determine if the Type I error rate and power are affected when the assumption of normality for the random component representing the group effect is violated. ^ In this study, simulated data are used to examine the Type I error rate, power, bias and mean squared error of the estimates of the fixed effect and the observed intraclass correlation coefficient (ICC) when the random component representing the group effect possess distributions with non-normal characteristics, such as heavy tails or severe skewness. The simulated data are generated with various characteristics (e.g. number of schools per condition, number of students per school, and several within school ICCs) observed in most small, school-based, group-randomized trials. The analysis is carried out using SAS PROC MIXED, Version 6.12, with random effects specified in a random statement and restricted maximum likelihood (REML) estimation specified. The results from the non-normally distributed data are compared to the results obtained from the analysis of data with similar design characteristics but normally distributed random effects. ^ The results suggest that the violation of the normality assumption for the group component by a skewed or heavy-tailed distribution does not appear to influence the estimation of the fixed effect, Type I error, and power. Negative biases were detected when estimating the sample ICC and dramatically increased in magnitude as the true ICC increased. These biases were not as pronounced when the true ICC was within the range observed in most group-randomized trials (i.e. 0.00 to 0.05). The normally distributed group effect also resulted in bias ICC estimates when the true ICC was greater than 0.05. However, this may be a result of higher correlation within the data. ^
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This article proposes a three-step procedure to estimate portfolio return distributions under the multivariate Gram-Charlier (MGC) distribution. The method combines quasi maximum likelihood (QML) estimation for conditional means and variances and the method of moments (MM) estimation for the rest of the density parameters, including the correlation coefficients. The procedure involves consistent estimates even under density misspecification and solves the so-called ‘curse of dimensionality’ of multivariate modelling. Furthermore, the use of a MGC distribution represents a flexible and general approximation to the true distribution of portfolio returns and accounts for all its empirical regularities. An application of such procedure is performed for a portfolio composed of three European indices as an illustration. The MM estimation of the MGC (MGC-MM) is compared with the traditional maximum likelihood of both the MGC and multivariate Student’s t (benchmark) densities. A simulation on Value-at-Risk (VaR) performance for an equally weighted portfolio at 1% and 5% confidence indicates that the MGC-MM method provides reasonable approximations to the true empirical VaR. Therefore, the procedure seems to be a useful tool for risk managers and practitioners.
Resumo:
This paper deals with the estimation of a time-invariant channel spectrum from its own nonuniform samples, assuming there is a bound on the channel’s delay spread. Except for this last assumption, this is the basic estimation problem in systems providing channel spectral samples. However, as shown in the paper, the delay spread bound leads us to view the spectrum as a band-limited signal, rather than the Fourier transform of a tapped delay line (TDL). Using this alternative model, a linear estimator is presented that approximately minimizes the expected root-mean-square (RMS) error for a deterministic channel. Its main advantage over the TDL is that it takes into account the spectrum’s smoothness (time width), thus providing a performance improvement. The proposed estimator is compared numerically with the maximum likelihood (ML) estimator based on a TDL model in pilot-assisted channel estimation (PACE) for OFDM.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.
Resumo:
The degree of polarization of a refected field from active laser illumination can be used for object identifcation and classifcation. The goal of this study is to investigate methods for estimating the degree of polarization for refected fields with active laser illumination, which involves the measurement and processing of two orthogonal field components (complex amplitudes), two orthogonal intensity components, and the total field intensity. We propose to replace interferometric optical apparatuses with a computational approach for estimating the degree of polarization from two orthogonal intensity data and total intensity data. Cramer-Rao bounds for each of the three sensing modalities with various noise models are computed. Algebraic estimators and maximum-likelihood (ML) estimators are proposed. Active-set algorithm and expectation-maximization (EM) algorithm are used to compute ML estimates. The performances of the estimators are compared with each other and with their corresponding Cramer-Rao bounds. Estimators for four-channel polarimeter (intensity interferometer) sensing have a better performance than orthogonal intensities estimators and total intensity estimators. Processing the four intensities data from polarimeter, however, requires complicated optical devices, alignment, and four CCD detectors. It only requires one or two detectors and a computer to process orthogonal intensities data and total intensity data, and the bounds and estimator performances demonstrate that reasonable estimates may still be obtained from orthogonal intensities or total intensity data. Computational sensing is a promising way to estimate the degree of polarization.