996 resultados para Matter-wave interferometry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following parturition, all cows display a wave of ovarian follicular growth, but a large proportion fail to generate a preovulatory rise in estradiol, and hence fail to ovulate. Follicle-stimulating hormone (FSH) exists as multiple isoforms in the circulation depending on the type and extent of glycosylation, and this has pronounced effects on its biological properties. This study examined differences in plasma FSH, estradiol, and inhibin A concentrations, and the distribution of FSH isoforms in cows with ovulatory or atretic dominant follicles during the first postpartum follicle wave. Plasma FSH isoform distribution was examined in both groups during the period of final development of the dominant follicle by liquid phase isoelectric focusing. Cows with an ovulatory follicle had higher circulating estradiol and inhibin A concentrations, and lower plasma FSH concentrations. The distribution of FSH isoforms displayed a marked shift toward the less acidic isoforms in cows with ovulatory follicles. A higher proportion of the FSH isoforms had a pl>5.0 in cows with ovulatory follicles compared to those with atretic follicles. In addition, cows with ovulatory follicles had greater dry matter intake, superior energy balance, elevated circulating concentrations of insulin and insulin-like growth factor-I, and lower plasma nonesterified fatty acids. The shift in FSH isoforms toward a greater abundance of the less acidic isoforms appears to be a key component in determining the capability for producing a preovulatory rise in estradiol, and this shift in FSH isoforms was associated with more favorable bioenergetic and metabolic status. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density. The equation of state is derived from a relativistic mean field model, which is a variant of the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations leads to differential equations for the density perturbation. We solve them numerically for linear and spherical perturbations and follow the propagation of the initial pulses. For linear perturbations we find single soliton solutions and solutions with one or more solitons followed by ""radiation"". Depending on the equation of state a strong damping may occur. We consider also the evolution of perturbations in a medium without dispersive effects. In this case we observe the formation and breaking of shock waves. We study all these equations also for matter at finite temperature. Our results may be relevant for the analysis of RHIC data. They suggest that the shock waves formed in the quark gluon plasma phase may survive and propagate in the hadronic phase. (C) 2009 Elseiver. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development and evaluation of a sequential injection method to automate the determination of methyl parathion by square wave adsorptive cathodic stripping voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. Accumulation and stripping steps are made in the sample medium conditioned with 40 mmol L-1 Britton-Robinson buffer (pH 10) in 0.25 mol L-1 NaNO3. The homogenized mixture is injected at a flow rate of 10 mu Ls(-1) toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode. After a suitable deposition time, the flow is stopped and the potential is scanned from -0.3 to -1.0 V versus Ag/AgCl at frequency of 250 Hz and pulse height of 25 mV The linear dynamic range is observed for methyl parathion concentrations between 0.010 and 0.50 mgL(-1), with detection and quantification limits of 2 and 7 mu gL(-1), respectively. The sampling throughput is 25 h(-1) if the in line standard addition and sample conditioning protocols are followed, but this frequency can be increased up to 61 h(-1) if the sample is conditioned off-line and quantified using an external calibration curve. The method was applied for determination of methyl parathion in spiked water samples and the accuracy was evaluated either by comparison to high performance liquid chromatography with UV detection, or by the recovery percentages. Although no evidences of statistically significant differences were observed between the expected and obtained concentrations, because of the susceptibility of the method to interference by other pesticides (e.g., parathion, dichlorvos) and natural organic matter (e.g., fulvic and humic acids), isolation of the analyte may be required when more complex sample matrices are encountered. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish universal behaviour in the temperature dependencies of some observables in (s + id)-wave BCS superconductivity in the presence of a weak a wave. We find also a second second-order phase transition. As temperature is lowered-past the usual critical temperature T-c, a less ordered superconducting phase is created in the d wave, which changes to a more ordered phase in a (s + id) wave at T-c1 (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use the duality between the local Cartezian coordinates and the solutions of the Klein-Gordon equation to parametrize locally the spacetime in terms of wave functions and prepotentials. The components of metric, metric connection, curvature as well as the Einstein equation are given in this parametrization. We also discuss the local duality between coordinates and quantum fields and the metric in this later reparametrization. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After five years of running at RHIC, and on the eve of the LHC heavy-ion program, we highlight the status of femtoscopic measurements. We emphasize the role interferometry plays in addressing fundamental questions about the state of matter created in such collisions, and present an enumerated list of measurements, analyses and calculations that are needed to advance the field in the coming years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a new approach for thermal lens analysis using a two-wavelength DSPI (Digital Speckle Pattern Interferometry) setup for wavefront sensing. The employed geometry enables the sensor to detect wavefronts with small phase differences and inherent aberrations found in induced lenses. The wavefronts was reconstructed by four-stepping fringe evaluation and branch-cut unwrapping from fringes formed onto a diffusive glass. Real-time single-exposure contour interferograms could be obtained in order to get discernible and low-spacial frequency contour fringes and obtain low-noise measurements. In our experiments we studied the thermal lens effect in a 4% Er-doped CaO-Al2O3 glass sample. The diode lasers were tuned to have a contour interval of around 120 μm. The incident pump power was longitudinally and collinearly oriented with the probe beams. Each interferogram described a spherical-like wavefront. Using the ABCD matrix formalism we obtained the induced lens dioptric power from the thermal effect for different values of absorbed pump power. © 2012 Copyright SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a method for dioptric power mapping of progressive lenses through dual wavelength, low-coherence digital speckle pattern interferometry. Lens characterization finds several applications and is extremely useful in the fields of ophthalmology and astronomy, among others. The optical setup employs two red diode lasers which are conveniently aligned and tuned in order to generate a synthetic wavelength. The resulting speckle image formed onto a diffusive glass plate positioned behind the test lens appears covered of contour interference fringes describing the deformation on the light wavefront due to the analyzed lens. By employing phase stepping and phase unwrapping methods the wavefront phase was retrieved and then expressed in terms of a Zernike series. From this series, expressions for the dioptric power and astigmatic power were derived as a function of the x- and y-coordinates of the lens aperture. One spherical and two progressive lenses were measured. The experimental results presented a good agreement with those obtained through a commercial lensometer, showing the potentialities of the method. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend the Miles mechanism of wind-wave generation to finite depth. A beta-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of beta is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the beta-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrodinger equation is derived and the Akhmediev, Peregrine and Kuznetsov-Ma breather solutions for weak wind inputs in finite depth h are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the system of massive Weyl fields propagating in a background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in a background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in a dense matter and a strong magnetic field. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the years, a drastic increase in online information disclosure spurs a wave of concerns from multiple stakeholders. Among others, users resent the “behind the closed doors” processing of their personal data by companies. Privacy policies are supposed to inform users how their personal information is handled by a website. However, several studies have shown that users rarely read privacy policies for various reasons, not least because limitedly readable policy texts are difficult to understand. Based on our online survey with over 440 responses, we examine the objective and subjective readability of privacy policies and investigate their impact on users’ trust in five big Internet services. Our findings show the stronger a user believes in having understood the privacy policy, the higher he or she trusts a web site across all companies we studied. Our results call for making readability of privacy policies more accessible to an average reader.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first radiocarbon chronology for sediments of the Argentine basin has been determined using accelerator mass spectrometer (AMS) analyses of 54 total organic carbon samples from four box and two piston cores collected from the downstream and upstream sides of two central Argentine Basin mudwaves. Throughout the Holocene, sediment from the geomorphically defined upstream side of each wave accumulated at rates of 30 to 105 cm/1000 years. Sediments from the downstream side of each wave accumulated at rates of 2 to 10 cm/1000 years in the late and early Holocene, while the mid Holocene is characterized by sedimentation rates less than 1.0 cm/1000 years. During the mid-Holocene, increased aridity reduced chemical weathering and the flow of the rivers draining to the continental shelf, causing a concomitant decrease in fine-grained terrigenous input to the basin as evidenced by decreased sedimentation rates, lower N/C ratios, and depleted delta13Corg values. It is estimated that all of the organic carbon deposited in the central basin during the mid-Holocene was of a marine origin. During the late and early Holocene, however, approximately 35% of the organic carbon deposited was of terrestrial origin. Bottom water flow speeds in the late Holocene were estimated using a lee-wave model and found to average 14 cm/s. This estimate is comparable to 10 cm/s mean and 15-20 cm/s maximum flow speeds measured by current meters deployed within the basin. Flow speeds in the Argentine Basin were 10% higher than today from 8000 to 2000 B.P., and are consistent with a general invigoration of thermohaline circulation that began between 9000 and 8000 B.P. It is proposed that the introduction of warm, salty Indian Ocean water into the northern North Atlantic at 9000 B.P. was the mechanism that provided the excess salt needed to stabilize the North Atlantic Deep Water thermohaline circulation system in its present mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Speed enforcement on public roadways is an important issue in order to guarantee road security and to reduce the number and seriousness of traffic accidents. Traditionally, this task has been partially solved using radar and/or laser technologies and, more recently, using video-camera based systems. All these systems have significant shortcomings that have yet to be overcome. The main drawback of classical Doppler radar technology is that the velocity measurement fails when several vehicles are in the radars beam. Modern radar systems are able to measure speed and range between vehicle and radar. However, this is not enough to discriminate the lane where the vehicle is driving on. The limitation of several vehicles in the beam is overcome using laser technology. However, laser systems have another important limitation: They cannot measure the speed of several vehicles simultaneously. Novel video-camera systems, based on license plate identification, solve the previous drawbacks, but they have the problem that they can only measure average speed but never top-speed. This paper studies the feasibility of using an interferometric linear frequency modulated continuous wave radar to improve top-speed enforcement on roadways. Two different systems based on down-the-road and across-the-road radar configurations are presented. The main advantage of the proposed solutions is they can simultaneously measure speed, range, and lane of several vehicles, allowing the univocal identification of the offenders. A detailed analysis about the operation and accuracy of these solutions is reported. In addition, the feasibility of the proposed techniques has been demonstrated with simulations and real experiments using a Ka-band interferometric radar developed by our research group.