987 resultados para Matrix functions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss a fast Bayesian extension to kriging algorithms which has been used successfully for fast, automatic mapping in emergency conditions in the Spatial Interpolation Comparison 2004 (SIC2004) exercise. The application of kriging to automatic mapping raises several issues such as robustness, scalability, speed and parameter estimation. Various ad-hoc solutions have been proposed and used extensively but they lack a sound theoretical basis. In this paper we show how observations can be projected onto a representative subset of the data, without losing significant information. This allows the complexity of the algorithm to grow as O(n m 2), where n is the total number of observations and m is the size of the subset of the observations retained for prediction. The main contribution of this paper is to further extend this projective method through the application of space-limited covariance functions, which can be used as an alternative to the commonly used covariance models. In many real world applications the correlation between observations essentially vanishes beyond a certain separation distance. Thus it makes sense to use a covariance model that encompasses this belief since this leads to sparse covariance matrices for which optimised sparse matrix techniques can be used. In the presence of extreme values we show that space-limited covariance functions offer an additional benefit, they maintain the smoothness locally but at the same time lead to a more robust, and compact, global model. We show the performance of this technique coupled with the sparse extension to the kriging algorithm on synthetic data and outline a number of computational benefits such an approach brings. To test the relevance to automatic mapping we apply the method to the data used in a recent comparison of interpolation techniques (SIC2004) to map the levels of background ambient gamma radiation. © Springer-Verlag 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine discrete functions that depend on their variables in a particular way, namely the H-functions. The results obtained in this work make the “construction” of these functions possible. H-functions are generalized, as well as their matrix representation by Latin hypercubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Work is partially supported by the Lithuanian State Science and Studies Foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Work supported by the Lithuanian State Science and Studies Foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthday

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper develops a novel realized matrix-exponential stochastic volatility model of multivariate returns and realized covariances that incorporates asymmetry and long memory (hereafter the RMESV-ALM model). The matrix exponential transformation guarantees the positivedefiniteness of the dynamic covariance matrix. The contribution of the paper ties in with Robert Basmann’s seminal work in terms of the estimation of highly non-linear model specifications (“Causality tests and observationally equivalent representations of econometric models”, Journal of Econometrics, 1988, 39(1-2), 69–104), especially for developing tests for leverage and spillover effects in the covariance dynamics. Efficient importance sampling is used to maximize the likelihood function of RMESV-ALM, and the finite sample properties of the quasi-maximum likelihood estimator of the parameters are analysed. Using high frequency data for three US financial assets, the new model is estimated and evaluated. The forecasting performance of the new model is compared with a novel dynamic realized matrix-exponential conditional covariance model. The volatility and co-volatility spillovers are examined via the news impact curves and the impulse response functions from returns to volatility and co-volatility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For decades scientists have attempted to use ideas of classical mechanics to choose basis functions for calculating spectra. The hope is that a classically-motivated basis set will be small because it covers only the dynamically important part of phase space. One popular idea is to use phase space localized (PSL) basis functions. This thesis improves on previous efforts to use PSL functions and examines the usefulness of these improvements. Because the overlap matrix, in the matrix eigenvalue problem obtained by using PSL functions with the variational method, is not an identity, it is costly to use iterative methods to solve the matrix eigenvalue problem. We show that it is possible to circumvent the orthogonality (overlap) problem and use iterative eigensolvers. We also present an altered method of calculating the matrix elements that improves the performance of the PSL basis functions, and also a new method which more efficiently chooses which PSL functions to include. These improvements are applied to a variety of single well molecules. We conclude that for single minimum molecules, the PSL functions are inferior to other basis functions. However, the ideas developed here can be applied to other types of basis functions, and PSL functions may be useful for multi-well systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral unmixing (SU) is a technique to characterize mixed pixels of the hyperspectral images measured by remote sensors. Most of the existing spectral unmixing algorithms are developed using the linear mixing models. Since the number of endmembers/materials present at each mixed pixel is normally scanty compared with the number of total endmembers (the dimension of spectral library), the problem becomes sparse. This thesis introduces sparse hyperspectral unmixing methods for the linear mixing model through two different scenarios. In the first scenario, the library of spectral signatures is assumed to be known and the main problem is to find the minimum number of endmembers under a reasonable small approximation error. Mathematically, the corresponding problem is called the $\ell_0$-norm problem which is NP-hard problem. Our main study for the first part of thesis is to find more accurate and reliable approximations of $\ell_0$-norm term and propose sparse unmixing methods via such approximations. The resulting methods are shown considerable improvements to reconstruct the fractional abundances of endmembers in comparison with state-of-the-art methods such as having lower reconstruction errors. In the second part of the thesis, the first scenario (i.e., dictionary-aided semiblind unmixing scheme) will be generalized as the blind unmixing scenario that the library of spectral signatures is also estimated. We apply the nonnegative matrix factorization (NMF) method for proposing new unmixing methods due to its noticeable supports such as considering the nonnegativity constraints of two decomposed matrices. Furthermore, we introduce new cost functions through some statistical and physical features of spectral signatures of materials (SSoM) and hyperspectral pixels such as the collaborative property of hyperspectral pixels and the mathematical representation of the concentrated energy of SSoM for the first few subbands. Finally, we introduce sparse unmixing methods for the blind scenario and evaluate the efficiency of the proposed methods via simulations over synthetic and real hyperspectral data sets. The results illustrate considerable enhancements to estimate the spectral library of materials and their fractional abundances such as smaller values of spectral angle distance (SAD) and abundance angle distance (AAD) as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we explore the validity of employing a modified version of the nonrelativistic structure code civ3 for heavy, highly charged systems, using Na-like tungsten as a simple benchmark. Consequently, we present radiative and subsequent collisional atomic data compared with corresponding results from a fully relativistic structure and collisional model. Our motivation for this line of study is to benchmark civ3 against the relativistic grasp0 structure code. This is an important study as civ3 wave functions in nonrelativistic R-matrix calculations are computationally less expensive than their Dirac counterparts. There are very few existing data for the W LXIV ion in the literature with which we can compare except for an incomplete set of energy levels available from the NIST database. The overall accuracy of the present results is thus determined by the comparison between the civ3 and grasp0 structure codes alongside collisional atomic data computed by the R-matrix Breit-Pauli and Dirac codes. It is found that the electron-impact collision strengths and effective collision strengths computed by these differing methods are in good general agreement for the majority of the transitions considered, across a broad range of electron temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lack of flexibility in logistic systems currently on the market leads to the development of new innovative transportation systems. In order to find the optimal configuration of such a system depending on the current goal functions, for example minimization of transport times and maximization of the throughput, various mathematical methods of multi-criteria optimization are applicable. In this work, the concept of a complex transportation system is presented. Furthermore, the question of finding the optimal configuration of such a system through mathematical methods of optimization is considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new methodologies to generate rational function approximations of broadband electromagnetic responses of linear and passive networks of high-speed interconnects, and to construct SPICE-compatible, equivalent circuit representations of the generated rational functions. These new methodologies are driven by the desire to improve the computational efficiency of the rational function fitting process, and to ensure enhanced accuracy of the generated rational function interpolation and its equivalent circuit representation. Toward this goal, we propose two new methodologies for rational function approximation of high-speed interconnect network responses. The first one relies on the use of both time-domain and frequency-domain data, obtained either through measurement or numerical simulation, to generate a rational function representation that extrapolates the input, early-time transient response data to late-time response while at the same time providing a means to both interpolate and extrapolate the used frequency-domain data. The aforementioned hybrid methodology can be considered as a generalization of the frequency-domain rational function fitting utilizing frequency-domain response data only, and the time-domain rational function fitting utilizing transient response data only. In this context, a guideline is proposed for estimating the order of the rational function approximation from transient data. The availability of such an estimate expedites the time-domain rational function fitting process. The second approach relies on the extraction of the delay associated with causal electromagnetic responses of interconnect systems to provide for a more stable rational function process utilizing a lower-order rational function interpolation. A distinctive feature of the proposed methodology is its utilization of scattering parameters. For both methodologies, the approach of fitting the electromagnetic network matrix one element at a time is applied. It is shown that, with regard to the computational cost of the rational function fitting process, such an element-by-element rational function fitting is more advantageous than full matrix fitting for systems with a large number of ports. Despite the disadvantage that different sets of poles are used in the rational function of different elements in the network matrix, such an approach provides for improved accuracy in the fitting of network matrices of systems characterized by both strongly coupled and weakly coupled ports. Finally, in order to provide a means for enforcing passivity in the adopted element-by-element rational function fitting approach, the methodology for passivity enforcement via quadratic programming is modified appropriately for this purpose and demonstrated in the context of element-by-element rational function fitting of the admittance matrix of an electromagnetic multiport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embryo implantation into the endometrium is a complex biological process involving the integration of steroid hormone signaling, endometrial tissue remodeling and maternal- fetal communications. A successful pregnancy is the outcome of the timely integration of these events during the early stages of implantation. The involvement of ovarian steroid hormones, estrogen (E) and progesterone (P), acting through their cognate receptors, is essential for uterine functions during pregnancy. The molecular mechanisms that control the process of implantation are undergoing active exploration. Through our recent efforts, we identified the transcription factor, CCAAT Enhancer Binding Protein Beta (C/EBPb) as a prominent target of estrogen and progesterone signaling in the uterus. The development of a C/EBPb-null mouse model, which is infertile, presented us with an opportunity to analyze the role of this molecule in uterine function. We discovered that C/EBPb functions in two distinct manners: (i) by acting as a mediator of E-induced proliferation of the uterine epithelium and (ii) by controlling uterine stromal cell differentiation, a process known as decidualization, during pregnancy. My studies have delineated important mechanisms by which E regulates C/EBPb expression to induce DNA replication and prevent apoptosis of uterine epithelial cells during E-induced epithelial growth. In subsequent studies, I analyzed the role of C/EBPb in decidualization and uncovered a unique mechanism by which C/EBPb regulates the synthesis of a unique laminin-containing extracellular matrix (ECM) that supports stromal cell differentiation and embryo invasion. In order to better define the role of laminin in implantation, we developed a laminin gamma 1-conditional knockout mouse model. This is currently an area of ongoing investigation. The information gained from our analysis of C/EBPb function in the uterus provides new insights into the mechanisms of steroid hormone action during early pregnancy. Ultimately, our findings may aid in the understanding of dysregulation of hormone-controlled pathways that underlie early pregnancy loss and infertility in women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specific domains can determine protein structural functional relationships. For the Alzheimer’s Amyloid Precursor Protein (APP) several domains have been described, both in its intracellular and extracellular fragments. Many functions have been attributed to APP including an important role in cell adhesion and cell to cell recognition. This places APP at key biological responses, including synaptic transmission. To fulfil these functions, extracellular domains take on added significance. The APP extracellular domain RERMS is in fact a likely candidate to be involved in the aforementioned physiological processes. A multidisciplinary approach was employed to address the role of RERMS. The peptide RERMS was crosslinked to PEG (Polyethylene glycol) and the reaction validated by FTIR (Fourier transform infrared spectrometry). FTIR proved to be the most efficient at validating this reaction because it requires only a drop of sample, and it gives information about the reactions occurred in a mixture. The data obtained consist in an infrared spectra of the sample, where peaks positions give information about the structure of the molecules, and the intensity of peaks is related to the concentration of the molecules. Subsequently substrates of PEG impregnated with RERMS were prepared and SH-SY5Y (human neuroblastoma cell line) cells were plated and differentiated on the latter. Several morphological alterations were clearly evident. The RERMS peptide provoked cells to take on a flatter appearance and the cytoskeletal architecture changed, with the appearance of stress fibres, a clear indicator of actin reorganization. Given that focal adhesions play a key role in determining cellular structure the latter were directly investigated. Focal adhesion kinase (FAK) is one of the most highly expressed proteins in the CNS (central nervous system) during development. It has been described to be crucial for radial migration of neurons. FAK can be localized in growth cones and mediated the response to attractive and repulsive cues during migration. One of the mechanisms by which FAK becomes active is by auto phosphorylation at tyrosine 397. It became clearly evident that in the presence of the RERMS peptide pFAK staining at focal adhesions intensified and more focal adhesions became apparent. Furthermore speckled structures in the nucleus, putatively corresponding to increased expression activity, also increased with RERMS. Taken together these results indicate that the RERMS domain in APP plays a critical role in determining cellular physiological responses. Here is suggested a model by which RERMS domain is recognized by integrins and mediate intracellular responses involving FAK, talin, actin filaments and vinculin. This mechanism probably is responsible for mediating cell adhesion and neurite outgrowth on neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transverse momentum dependent parton distribution/fragmentation functions (TMDs) are essential in the factorization of a number of processes like Drell-Yan scattering, vector boson production, semi-inclusive deep inelastic scattering, etc. We provide a comprehensive study of unpolarized TMDs at next-to-next-to-leading order, which includes an explicit calculation of these TMDs and an extraction of their matching coefficients onto their integrated analogues, for all flavor combinations. The obtained matching coefficients are important for any kind of phenomenology involving TMDs. In the present study each individual TMD is calculated without any reference to a specific process. We recover the known results for parton distribution functions and provide new results for the fragmentation functions. The results for the gluon transverse momentum dependent fragmentation functions are presented for the first time at one and two loops. We also discuss the structure of singularities of TMD operators and TMD matrix elements, crossing relations between TMD parton distribution functions and TMD fragmentation functions, and renormalization group equations. In addition, we consider the behavior of the matching coefficients at threshold and make a conjecture on their structure to all orders in perturbation theory.