962 resultados para Matrix Metalloproteinase 14
Resumo:
Matrix metalloproteinase (MMP)-9 is produced by the central nervous system and inflammatory cells in a variety of inflammatory conditions in both animals and humans. MMP-9 promotes inflammation, breakdown of the blood-brain barrier, and vasculitis. Because vasculitis is seen frequently in patients with coccidioidal meningitis (CM), this study evaluated the presence of MMP-9 within the cerebrospinal fluid (CSF) of rabbits infected intracisternally with Coccidioides immitis arthroconidia. Infected rabbits demonstrated systemic and neurological sequelae to infection, including CSF pleocytosis. Levels of MMP-9 within CSF were assayed by use of zymography and compared with MMP-2 levels, which served as an internal control. Elevated levels of MMP-9 were detectable by day 3, continued to increase through day 10, and declined by day 15 after infection. MMP-9 may contribute to inflammation and vasculitis in this animal model. Future work can focus on evaluation of MMP inhibitors, to gain a better perspective of the role of this MMP in CM.
Resumo:
To evaluate the spectrum and regulation of matrix metalloproteinases (MMPs) in bacterial meningitis (BM), concentrations of MMP-2, MMP-3, MMP-8, and MMP-9 and endogenous inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were measured in the cerebrospinal fluid (CSF) of 27 children with BM. MMP-8 and MMP-9 were detected in 91% and 97%, respectively, of CSF specimens from patients but were not detected in control patients. CSF levels of MMP-9 were higher (P<.05) in 5 patients who developed hearing impairment or secondary epilepsy than in those who recovered without neurological deficits. Levels of MMP-9 correlated with concentrations of TIMP-1 (P<.001) and tumor necrosis factor-alpha (P=.03). Repeated lumbar punctures showed that levels of MMP-8 and MMP-9 were regulated independently and did not correlate with the CSF cell count. Therefore, MMPs may derive not only from granulocytes infiltrating the CSF space but also from parenchymal cells of the meninges and brain. High concentrations of MMP-9 are a risk factor for the development of postmeningitidal neurological sequelae.
Resumo:
OBJECTIVE To evaluate the origin and degree of activity of nitric oxide (NO) and matrix metalloproteinase (MMP) in explants of cranial cruciate ligaments (CCLs) obtained from dogs and cultured with and without inflammatory activators. SAMPLE POPULATION Tissue specimens obtained from 7 healthy adult Beagles that were (mean +/- SD) 4.5 +/- 0.5 years old and weighed 12.5 +/- 0.8 kg. PROCEDURE The CCLs were harvested immediately after dogs were euthanatized, and specimens were submitted for explant culture. Cultures were stimulated by incubation with a combination of interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide, or they were not stimulated. Culture supernatants were examined for production of NO nitrite-nitrate metabolites (NOts) and activity of MMP Cultured specimens were evaluated by use of immunohistochemical analysis to detect activity of inducible NO synthase (iNOS). RESULTS All ligament explants produced measurable amounts of NOts. Stimulated cultures produced significantly more NOts after incubation for 24 and 48 hours, compared with nonstimulated cultures. Production of MMP in supernatants after incubation for 48 hours was significantly higher in stimulated cultures than in nonstimulated cultures. Cells with positive staining for iNOS were detected on all slides. Positively stained cells were predominantly chondroid metaplastic. There was a significant difference in intensity of cell staining between stimulated and non-stimulated cultures. CONCLUSIONS AND CLINICAL RELEVANCE Explant cultures of intact CCLs obtained from dogs produce iNOS-induced NO. Stimulation of chondroid metaplastic cells in CCL of dogs by use of inflammatory activators can increase production of iNOS, NOts, and MMP.
Resumo:
BACKGROUND Pneumococcal meningitis (PM) is characterized by high mortality and morbidity including long-term neurofunctional deficits. Neuropathological correlates of these sequelae are apoptosis in the hippocampal dentate gyrus and necrosis in the cortex. Matrix metalloproteinases (MMPs) play a critical role in the pathophysiology of PM. RS-130830 (Ro-1130830, CTS-1027) is a potent partially selective inhibitor of MMPs of a second generation and has been evaluated in clinical trials as an anti-arthritis drug. It inhibits MMPs involved in acute inflammation but has low activity against MMP-1 (interstitial collagenase), MMP-7 (matrilysin) and tumour necrosis factor α converting enzyme (TACE). METHODS A well-established infant rat model of PM was used where live Streptococcus pneumoniae were injected intracisternally and antibiotic treatment with ceftriaxone was initiated 18 h post infection (hpi). Treatment with RS-130830 (75 mg/kg bis in die (bid) i.p., n = 40) was started at 3 hpi while control littermates received the vehicle (succinylated gelatine, n = 42). RESULTS Cortical necrosis was significantly attenuated in animals treated with RS-130830, while the extent of hippocampal apoptosis was not influenced. At 18 hpi, concentrations of interleukin (IL)-1β and IL-10 were significantly lower in the cerebrospinal fluid of treated animals compared to controls. RS-130830 significantly reduced weight loss and leukocyte counts in the cerebrospinal fluid of survivors of PM. CONCLUSION This study identifies MMP inhibition, specifically with RS-130830, as an efficient strategy to attenuate disease severity and cortical brain injury in PM.
Resumo:
OBJECTIVES To examine whether circulating levels of matrix metalloproteinase 9 (MMP-9) were associated with ultrasound-assessed intima-media thickness (IMT) and echolucent plaques in the carotid and femoral arteries. To examine preanalytical sources of variability in MMP-9 concentrations related to sampling procedures. SUBJECTS AND DESIGN Plasma and serum MMP-9 levels were compared with ultrasound assessed measures of femoral and carotid atherosclerosis, in a cross-sectional study of 61-year-old men (n = 473). Preanalytical sources of variability in MMP-9 levels were examined in 10 healthy subjects. Main outcome measures were circulating levels of MMP-9 in serum and plasma, IMT of the carotid and femoral arteries, and plaque status based on size and echolucency. SETTING Research unit at university hospital. RESULTS Plasma concentrations of total and active MMP-9 were associated with femoral artery IMT independently of traditional cardiovascular risk factors, and were higher in subjects with moderate to large femoral plaques. Plasma MMP-9 concentration was higher in men with echolucent femoral plaques (P = 0.006) compared with subjects without femoral plaques. No similar associations were found for carotid plaques. MMP-9 concentrations were higher in serum than in plasma, and higher when sampling was performed with Vacutainer than with syringe. MMP-9 levels in serum were more strongly associated with peripheral neutrophil count compared with MMP-9 levels in plasma. CONCLUSIONS Plasma MMP-9 levels were associated with atherosclerosis in the femoral artery, and total MMP-9 concentration was higher in men with echolucent femoral plaques. The choice of sample material and sampling method affect the measurements of circulating MMP-9 levels.
Resumo:
INTRODUCTION The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e(-/-) mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. METHODS Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e(-/-) mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. RESULTS Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e(-/-) mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e(-/-) cartilage explants. OA progression was significantly enhanced in the Tfap2e(-/-) mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e(-/-) articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. CONCLUSIONS We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.
Resumo:
The overall purpose of this study was to assess the relationship between the promoter region polymorphism (-2607 1G/2G) of matrix metalloproteinase-1 (MMP-1) polymorphism and outcome in brain tumor patients diagnosed with a primary brain tumor between 1994 and 2000 at The University of Texas M. D. Anderson Cancer Center. The MMP-1 polymorphism was genotyped for all brain tumor patients who participated in the Family Brain Tumor Study and for whom blood samples were available. Relevant covariates were abstracted from medical records for all cases from the original protocol, including information on demographics, tumor histology, therapy and outcome was obtained. The hypothesis was that brain tumor patients with the 2G allele have a poorer prognosis and shorter survival than brain tumor patients with the 1G allele. ^ Experimental Design: Genetic variants for the MMP-1 enzyme were determined by a polymerase chain reaction-restriction fragment length polymorphism assay. Comparison was made between the overall survival for cases with the 2G polymorphism and overall survival for cases with the 1G polymorphism using multivariable Cox Proportional-Hazard analysis, controlling for age, sex, Karnofsky Performance Scale (KPS), extent of surgery, tumor histology and treatment received. Kaplan-Meier and Cox Proportional-Hazard analyses were utilized to assess if the MMP-1 polymorphisms were related to overall survival. Results: Overall survival was not statistically significantly different between the 2G allele brain tumor patients and the 1G allele patients and there was no statistically significant difference between tumor types. ^ Conclusions: No association was found between MMP-1 polymorphisms and survival in patients with malignant gliomas. ^
Resumo:
Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor invasion and angiogenesis. Secretion of MMP-9 has been reported in various cancer types including lung cancer, brain cancer, colon cancer, and breast cancer. Heregulin is a growth factor that regulates growth and differentiation of normal breast cells as well as mammary tumor cells. To study the role of heregulin in breast cancer metastasis, we tested whether heregulin may regulate MMP-9 secretion. By screening a panel of breast cancer cell line for their ability to respond to heregulin and produce MMP-9, we have found that MMP-9 secretion can be induced by heregulin-β1 in two breast cancer cell lines, SKBr3 and MCF-7. In both cell lines, increase of MMP-9 activity as shown by zymography was accompanied by increased protein level as well as mRNA level of MMP-9. Using a reporter luciferase assay, we have identified that proximal −670bp promoter of MMP-9 had similar activity to a 2.2kb MMP-9 promoter in response to heregulin stimulation. Heregulin treatment of SKBr3 and MCF-7 activated multiple signaling pathways inside cells. These include the Erk pathway, the p38 kinase pathway, PKC pathway, and PI-3K pathway. To examine which pathways are involved in MMP-9 activation by heregulin, we have used a panel of chemical inhibitors to specifically inhibit each one of these pathways. Ro-31-8220 (PKC inhibitor) and SB203580 (p38 kinase inhibitor) completely blocked heregulin activation of MMP-9. On the other hand, PD098059 (MEK-1 inhibitor) partially blocked MMP-9 activation, whereas PI-3K inhibitor, wortmannin, had no effect. Therefore, at least three signaling pathways are involved in activation of MMP-9 by heregulin. Since MMP-9 is tightly associated with metastatic potential, our study also suggests that heregulin may enhance breast tumor metastasis through induction of MMP-9 expression. ^
Resumo:
A human fibroblast cDNA expression library was screened for cDNA clones giving rise to flat colonies when transfected into v-Ki-ras-transformed NIH 3T3 cells. One such gene, RECK, encodes a membrane-anchored glycoprotein of about 110 kDa with multiple epidermal growth factor-like repeats and serine-protease inhibitor-like domains. While RECK mRNA is expressed in various human tissues and untransformed cells, it is undetectable in tumor-derived cell lines and oncogenically transformed cells. Restored expression of RECK in malignant cells resulted in suppression of invasive activity with concomitant decrease in the secretion of matrix metalloproteinase-9 (MMP-9), a key enzyme involved in tumor invasion and metastasis. Moreover, purified RECK protein was found to bind to, and inhibit the proteolytic activity of, MMP-9. Thus, RECK may link oncogenic signals to tumor invasion and metastasis.
Resumo:
The type IV collagenases/gelatinases matrix metalloproteinase-2 (MMP-2) and MMP-9 play a variety of important roles in both physiological and pathological processes and are regulated by various growth factors, including transforming growth factor-β1 (TGF-β1), in several cell types. Previous studies have suggested that cellular control of one or both collagenases can occur through direct transcriptional mechanisms and/or after secretion through proenzyme processing and interactions with metalloproteinase inhibitors. Using human prostate cancer cell lines, we have found that TGF-β1 induces the MMP-9 proenzyme; however, this induction does not result from direct effects on gene transcription but, instead, through a protein synthesis–requiring process leading to increased MMP-9 mRNA stability. In addition, we have examined levels of TGF-β1 regulation of MMP-2 in one prostate cancer cell line and found that TGF-β1 induces higher secreted levels of this collagenase through increased stability of the secreted 72-kDa proenzyme. These results identify two novel nontranscriptional pathways for the cellular regulation of MMP-9 and MMP-2 collagenase gene expression and activities.
Resumo:
To examine the role of matrilysin (MAT), an epithelial cell-specific matrix metalloproteinase, in the normal development and function of reproductive tissues, we generated transgenic animals that overexpress MAT in several reproductive organs. Three distinct forms of human MAT (wild-type, active, and inactive) were placed under the control of the murine mammary tumor virus promoter/enhancer. Although wild-type, active, and inactive forms of the human MAT protein could be produced in an in vitro culture system, mutations of the MAT cDNA significantly decreased the efficiency with which the MAT protein was produced in vivo. Therefore, animals carrying the wild-type MAT transgene that expressed high levels of human MAT in vivo were further examined. Mammary glands from female transgenic animals were morphologically normal throughout mammary development, but displayed an increased ability to produce β-casein protein in virgin animals. In addition, beginning at approximately 8 mo of age, the testes of male transgenic animals became disorganized with apparent disintegration of interstitial tissue that normally surrounds the seminiferous tubules. The disruption of testis morphology was concurrent with the onset of infertility. These results suggest that overexpression of the matrix-degrading enzyme MAT alters the integrity of the extracellular matrix and thereby induces cellular differentiation and cellular destruction in a tissue-specific manner.
Resumo:
Recent studies have demonstrated the existence of a soluble fibroblast growth factor (FGF) receptor type 1 (FGFR1) extracellular domain in the circulation and in vascular basement membranes. However, the process of FGFR1 ectodomain release from the plasma membrane is not known. Here we report that the 72-kDa gelatinase A (matrix metalloproteinase type 2, MMP2) can hydrolyze the Val368-Met369 peptide bond of the FGFR1 ectodomain, eight amino acids upstream of the transmembrane domain, thus releasing the entire extracellular domain. Similar results were obtained regardless of whether FGF was first bound to the receptor or not. The action of MMP2 abolished binding of FGF to an immobilized recombinant FGFR1 ectodomain fusion protein and to Chinese hamster ovary cells overexpressing FGFR1 The released recombinant FGFR1 ectodomain was able to bind FGF after MMP2 cleavage, suggesting that the cleaved soluble receptor maintained its FGF binding capacity. The activity of MMP2 could not be reproduced by the 92-kDa gelatinase B (MMP9) and was inhibited by tissue inhibitor of metalloproteinase type 2. These studies demonstrate that FGFR1 may be a specific target for MMP2 on the cell surface, yielding a soluble FGF receptor that may modulate the mitogenic and angiogenic activities of FGF.
Resumo:
Reasons for performing study: The dysadhesion and destruction of lamellar basement membrane of laminitis may be due to increased lamellar metalloproteinase activity. Characterising lamellar metalloproteinase-2 (MMP-2) and locating it in lamellar tissues may help determine if laminitis pathology is associated with increased MMP-2 transcription. Objectives: To clone and sequence the cDNA encoding lamellar MMP-2, develop antibody and in situ hybridisation probes to locate lamellar MMP-2 and quantitate MMP-2 transcription in normal and laminitis tissue. Methods: Total RNA was isolated, fragmented by RT-PCR, cloned into vector and sequenced. Rabbit anti-equine MMP-2 and labelled MMP-2 riboprobe were developed to analyse and quantitate MMP-2 expression. Results: Western immunoblotting with anti-MMP-2 detected 72 kDa MMP-2 in hoof tissue homogenates and cross-reacted with human MMP-2. Immunohistochemistry and in situ hybridisation detected MMP-2 in the cytoplasm of basal and parabasal cells in close proximity to the lamellar basement membrane. Northern analysis and quantitative real-time PCR showed MMP-2 expression significantly (P
Resumo:
Objective. Patients with rheumatoid arthritis (RA) have increased concentrations of the amino acid glutamate in synovial fluid. This study was undertaken to determine whether glutamate receptors are expressed in the synovial joint, and to determine whether activation of glutamate receptors on human synoviocytes contributes to RA disease pathology. Methods. Glutamate receptor expression was examined in tissue samples from rat knee joints and in human fibroblast-like synoviocytes (FLS). FLS from 5 RA patients and 1 normal control were used to determine whether a range of glutamate receptor antagonists influenced expression of the proinflammatory cytokine interleukin-6 (IL-6), enzymes involved in matrix degradation and cytokine processing (matrix metalloproteinase 2 [MMP-2] and MMP-9), and the inhibitors of these enzymes (tissue inhibitor of metalloproteinases 1 [TIMP-1] and TIMP-2). IL-6 concentrations were determined by enzyme-linked immunosorbent assay, MMP activity was measured by gelatin zymography, and TIMP activity was determined by reverse zymography. Fluorescence imaging of intracellular calcium concentrations in live RA FLS stimulated with specific antagonists was used to reveal functional activation of glutamate receptors that modulated IL-6 or MMP-2. Results. Ionotropic and metabotropic glutamate receptor subunit mRNA were expressed in the patella, fat pad, and meniscus of the rat knee and in human articular cartilage. Inhibition of N-methyl-D-aspartate (NMDA) receptors in RA FLS increased proMMP-2 release, whereas non-NMDA ionotropic glutamate receptor antagonists reduced IL-6 production by these cells. Stimulation with glutamate, NMDA, or kainate (KA) increased intracellular calcium concentrations in RA FLS, demonstrating functional activation of specific ionotropic glutamate receptors. Conclusion. Our findings indicate that activation of NMDA and KA glutamate receptors on human synoviocytes may contribute to joint destruction by increasing IL-6 expression. © 2007, American College of Rheumatology.
Resumo:
OBJECTIVE: The aim of this study was to compare the immunohistochemical expression of nuclear factor κB (NF-κB), matrix metalloproteinase 9 (MMP-9), and CD105 in odontogenic keratocysts (OKCs), dentigerous cysts (DCs), and radicular cysts (RCs). STUDY DESIGN: Twenty cases of OKCs, 20 DCs, and 20 RCs were analyzed. A labeling index (LI), which expresses the percentage of NF-κB-stained nuclei, was calculated for the analysis of NF-κB expression. Expression of MMP-9 in the epithelium and in the capsule of each lesion was scored as 0 (<10% stained cells), 1 (10%-50% stained cells), or 2 (>50% stained cells). In addition, MMP-9 immunostaining was analyzed in endothelial cells of vessels with a conspicuous lumen. The angiogenic index was determined based on the number of anti-CD105 antibody-stained microvessels. RESULTS: In the epithelial component, the NF-κB LI was higher in OKCs than in DCs and RCs (P < .001). Analysis of MMP-9 expression in the epithelial component showed a predominance of score 2 in OKCs (90%), DCs (70%), and RCs (65%; P = .159). Evaluation of the NF-κB LI according to the expression of MMP-9 in the epithelial lining revealed no significant difference between lesions (P = .282). In the fibrous capsule, the highest percentage of MMP-9-stained cells (score 2) was observed in OKCs (P = .100). Analysis of the expression of MMP-9 in the vessels of odontogenic cysts showed a predominance of score 2 in OKCs (80%) and RCs (50%) and of score 1 in DCs (75%; P = .002). Mean microvessel count was high in RCs (16.9), followed by DCs (12.1) and OKCs (10.0; P = .163). No significant difference in microvessel count according to the expression of MMP-9 was observed between groups (P = .689). CONCLUSIONS: The results suggest that the more aggressive biologic behavior of OKCs is related to the higher expression of MMP-9 and NF-κB in those lesions. The differences in the biologic behavior of the lesions studied do not seem to be associated with the angiogenic index.