935 resultados para Matabolism of Proteins
Resumo:
The ovary of the tick Ainblyomma triste is classified as panoistic, which is characterized by the presence of oogonia without nurse and follicular cells. The present study has demonstrated that the oocytes in all developmental stages (I-IV) are attached to the ovary through a pedicel, a cellular structure that synthesizes and provides carbohydrate, lipids and proteins supplies for the oocytes during the vitellogenesis process. The lipids are deposited during all oocyte stages; they are freely distributed as observed in stages II, III and IV or they form complexes with other elements. The proteins are also deposited in all stages of the oocytes, however, in lower concentration in the stage IV. There is carbohydrate deposition from oocytes in the stage II as well as in stages III and IV. In addition, the present work has demonstrated that the oocyte yolk of A. triste has a glycolipoprotein nature and the elements are deposited in the following sequence: firstly the lipids and proteins, and finally the carbohydrates. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Parmodel is a web server for automated comparative modeling and evaluation of protein structures. The aim of this tool is to help inexperienced users to perform modeling, assessment, visualization, and optimization of protein models as well as crystallographers to evaluate structures solved experimentally. It is subdivided in four modules: Parmodel Modeling, Parmodel Assessment, Parmodel Visualization, and Parmodel Optimization. The main module is the Parmodel Modeling that allows the building of several models ford a same protein in a reduced time, through the distribution of modeling processes on a Beowulf cluster. Parmodel automates and integrates the main softwares used in comparative modeling as MODELLER, Whatcheck, Procheck, Raster3D, Molscript, and Gromacs. This web server is freely accessible at http://www.biocristalografia.df.ibilce.unesp.br/tools/parmodel. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The electrophoretical protein patterns of hypopharyngeal glands, larval food of Melipona, and royal jelly of Apis were compared.Since protein patterns of hypopharyngeal glands from newly emerged workers, brood cell provisioners and foragers are similar to freshly deposited larval food, the identical protein bands probably represent actual gland secretion. This suggests that, as in Apis, the glands secrete proteins to the larval food, and maintain this ability throughout life, although at slightly different intensities, according to the activity of the bees.The similarity on the electrophoretic profiles of the major larval food protein in Apis and Melipona is an interesting finding because of its probable evolutionary significance.
Resumo:
Giardia duodenalis isolates from asymptomatic or symptomatic patients and from animals present similarities and differences in the protein composition, antigenic profile, pattern of proteases and isoenzymes, as well as in nucleic acids analysis. In the present overview, these differences and similarities are reviewed with emphasis in the host-parasite interplay and possible mechanisms of virulence of the protozoon.
Resumo:
The effect of salts, detergents and chaotropic agents on mass spectrometric analysis are relatively well understood, mainly due to their actions decreasing the performance of ESI interface in mass spectrometric analysis. However, there are few studies in the literature characterizing the effect of protein stabilization by glycerol, followed in some circumstances by the suppression of protein signal when ESI interface is used. The aim of the present research was to investigate in details the mass spectrometric behavior of some proteins in presence of high levels of glycerol during ESI-MS analysis. Thus, horse heart myoglobin and chicken ovalbumin were used as standard proteins. It was demonstrated that the presence of 1% (v/v) glycerol suppressed the signal of these proteins during the ESI-MS analysis, even when the sample nozzle potential was scanned from 28 to 80 V. However, when the glycerol concentration was decreased to 0.5% (v/v) and the sample cone voltage adjusted to 50 V, a perfect envelope of peaks was observed, allowing the spectrum deconvolution and the molecular mass determination with mass accuracy lower than 0.01% in each situation. A molecular explanation for this suppressive effect and for the analytical overcoming of this difficult is proposed.
Resumo:
In the present study, we compared six different solubilization buffers and optimized two-dimensional electrophoresis (2-DE) conditions for human lymph node proteins. In addition, we developed a simple protocol for 2-D gel storage. Efficient solubilization was obtained with lysis buffers containing (a) 8 M urea, 4% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), 40 mM Tris base, 65 mM DTT (dithiothreitol) and 0.2% carrier ampholytes; (b) 5 M urea, 2 M thiourea, 2% CHAPS, 2% SB 3-10 (N-decyl-N,N-dimethyl-3-ammonio-1-propanesulfonate), 40 mM Tris base, 65 mM DTT and 0.2% carrier ampholytes or (c) 7 M urea, 2 M thiourea, 4% CHAPS, 65 mM DTT and 0.2% carrier ampholytes. The optimal protocol for isoelectric focusing (IEF) was accumulated voltage of 16,500 Vh and 0.6% DTT in the rehydration solution. In the experiments conducted for the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), best results were obtained with a doubled concentration (50 mM Tris, 384 mM glycine, 0.2% SDS) of the SDS electrophoresis buffer in the cathodic reservoir as compared to the concentration in the anodic reservoir (25 mM Tris, 192 mM glycine, 0.1% SDS). Among the five protocols tested for gel storing, success was attained when the gels were stored in plastic bags with 50% glycerol. This is the first report describing the successful solubilization and 2D-electrophoresis of proteins from human lymph node tissue and a 2-D gel storage protocol for easy gel handling before mass spectrometry (MS) analysis.
Resumo:
Moringa oleifera Lam, is a leguminous plant, originally from Asia, which is cultivated in Brazil because of its low production cost. Although some people have used this plant as food, there is little information about its chemical and nutritional characteristics. The objective of this study was to characterise the leaves of M. oleifera in terms of their chemical composition, protein fractions obtained by solubility in different systems and also to assess their nutritional quality and presence of bioactive substances. The whole leaf flour contained 28.7% crude protein, 7.1% fat, 10.9% ashes, 44.4% carbohydrate and 3.0 mg 100 g(-1) calcium and 103.1 mg 100 g(-1) iron. The protein profile revealed levels of 3.1% albumin, 0.3% globulins, 2.2% prolamin, 3.5% glutelin and 70.1% insoluble proteins. The hydrolysis of the protein from leaf flour employing sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (ME) resulted in 39.5% and 29.5%, respectively. The total protein showed low in vitro digestibility (31.8%). The antinutritional substances tested were tannins (20.7 mg g(-1)), trypsin inhibitor (1.45 TIU mg g(-1)), nitrate (17 mg g(-1)) and oxalic acid (10.5 mg g(-1)), besides the absence of cyanogenic compounds. beta-Carotene and lutein stood out as major carotenoids, with concentrations of 161.0 and 47.0 mu g g(-1) leaf, respectively. Although M. oleifera leaves contain considerable amount of crude protein, this is mostly insoluble and has low in vitro digestibility, even after heat treatment and chemical attack. In vivo studies are needed to better assess the use of this leaf as a protein source in human feed. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. Results: We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. Conclusions: Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.
Resumo:
The aim was to analyze the protein expression of apoptotic genes caspase-3, caspase-8 and bcl-2 with the immunohistochemistry technique, correlating with tumor grade (I, II and III) and with the patient survival in order to understand the basic mechanism of tumoral transformation. The immunohistochemistry reactions on 50 samples of squamous cell carcinoma were carried out with the avidin-biotin immunoperoxidase method and antigen recovery. The analyses were made using the graduation method "in crosses" (0 to 4 crosses - no stain to more than 75% of positives cells) and in categories (low, intermediate, high) of the cytoplasm immunoreactivity of the epidermoid penile carcinoma cells. It was observed a statistically significant difference when the expression of caspase-3 were compared with the grades land II of the tumor (p=0.0010) and when comparing the patient survival with the grades I and II of the tumor (p=0.0212). The protein bcl-2 was more expressed than caspase-3 and caspase-8 proteins, suggesting that the apoptotic rate in this carcinoma is low. The higher expression of the anti-apoptotic protein bcl-2 suggests a higher preservation of the tumoral cells.
Resumo:
This Ph.D. candidate thesis collects the research work I conducted under the supervision of Prof.Bruno Samor´ı in 2005,2006 and 2007. Some parts of this work included in the Part III have been begun by myself during my undergraduate thesis in the same laboratory and then completed during the initial part of my Ph.D. thesis: the whole results have been included for the sake of understanding and completeness. During my graduate studies I worked on two very different protein systems. The theorical trait d’union between these studies, at the biological level, is the acknowledgement that protein biophysical and structural studies must, in many cases, take into account the dynamical states of protein conformational equilibria and of local physico-chemical conditions where the system studied actually performs its function. This is introducted in the introductory part in Chapter 2. Two different examples of this are presented: the structural significance deriving from the action of mechanical forces in vivo (Chapter 3) and the complexity of conformational equilibria in intrinsically unstructured proteins and amyloid formation (Chapter 4). My experimental work investigated both these examples by using in both cases the single molecule force spectroscopy technique (described in Chapter 5 and Chapter 6). The work conducted on angiostatin focused on the characterization of the relationships between the mechanochemical properties and the mechanism of action of the angiostatin protein, and most importantly their intertwining with the further layer of complexity due to disulfide redox equilibria (Part III). These studies were accompanied concurrently by the elaboration of a theorical model for a novel signalling pathway that may be relevant in the extracellular space, detailed in Chapter 7.2. The work conducted on -synuclein (Part IV) instead brought a whole new twist to the single molecule force spectroscopy methodology, applying it as a structural technique to elucidate the conformational equilibria present in intrinsically unstructured proteins. These equilibria are of utmost interest from a biophysical point of view, but most importantly because of their direct relationship with amyloid aggregation and, consequently, the aetiology of relevant pathologies like Parkinson’s disease. The work characterized, for the first time, conformational equilibria in an intrinsically unstructured protein at the single molecule level and, again for the first time, identified a monomeric folded conformation that is correlated with conditions leading to -synuclein and, ultimately, Parkinson’s disease. Also, during the research work, I found myself in the need of a generalpurpose data analysis application for single molecule force spectroscopy data analysis that could solve some common logistic and data analysis problems that are common in this technique. I developed an application that addresses some of these problems, herein presented (Part V), and that aims to be publicly released soon.
Resumo:
The study of protein fold is a central problem in life science, leading in the last years to several attempts for improving our knowledge of the protein structures. In this thesis this challenging problem is tackled by means of molecular dynamics, chirality and NMR studies. In the last decades, many algorithms were designed for the protein secondary structure assignment, which reveals the local protein shape adopted by segments of amino acids. In this regard, the use of local chirality for the protein secondary structure assignment was demonstreted, trying to correlate as well the propensity of a given amino acid for a particular secondary structure. The protein fold can be studied also by Nuclear Magnetic Resonance (NMR) investigations, finding the average structure adopted from a protein. In this context, the effect of Residual Dipolar Couplings (RDCs) in the structure refinement was shown, revealing a strong improvement of structure resolution. A wide extent of this thesis is devoted to the study of avian prion protein. Prion protein is the main responsible of a vast class of neurodegenerative diseases, known as Bovine Spongiform Encephalopathy (BSE), present in mammals, but not in avian species and it is caused from the conversion of cellular prion protein to the pathogenic misfolded isoform, accumulating in the brain in form of amiloyd plaques. In particular, the N-terminal region, namely the initial part of the protein, is quite different between mammal and avian species but both of them contain multimeric sequences called Repeats, octameric in mammals and hexameric in avians. However, such repeat regions show differences in the contained amino acids, in particular only avian hexarepeats contain tyrosine residues. The chirality analysis of avian prion protein configurations obtained from molecular dynamics reveals a high stiffness of the avian protein, which tends to preserve its regular secondary structure. This is due to the presence of prolines, histidines and especially tyrosines, which form a hydrogen bond network in the hexarepeat region, only possible in the avian protein, and thus probably hampering the aggregation.