413 resultados para Masonry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Niger Coal Society (Societé Nigérienne de Charbon – SONICHAR) produces electricity for local consumption in Tefereyre, 75 km north-west from Agadez, Niger. The coal combustion residuals production is about 150,000 tons per year. In order to reduce this environmental burden and to valorize these by-products, a study focusing on their physical and chemical features as well as on the mechanical resistance of compressed brick has been undertaken. Physical characterization of coal slag, chemical and lixiviation tests have been carried out, assessing the material main parameters, verifying the presence of hazardous composites and elements and comparing the obtained results with the findings of an in-deep literary review. Cement powder has been chosen as stabilizing agent as a preliminary option. Four different dosages have been tested and bricks have been produced with a hand-operated press. Compressive strength has been tested at different days of curing. Results show remarkable uniaxial compressive strengths (UCS) for all the mixes after cure, ranging from 4MPa up to more than 20MPa for the highest stabilization ratio. UCS higher than 5MPa have been observed for 20% and 30% cement stabilization ratios after only 7 days of cure, reaching respectively about 11MPa and 13MPa after 45 days. In conclusion obtained bricks show good mechanical resistance and low weight. No health threat has been detected from the obtained sample. Study developments are oriented towards the feasibility of the utilization of low-cost, locally available stabilization means, notably clay and cohesive soils, and on thermal properties assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. The possibility of using pumice aggregates for concrete in structural applications is discussed. In particular, the mix design of lightweight concrete for the manufacturing masonry units having proper strength, is discussed. Moreover, the design of the unit shape according to the technical code requirements and making it possible to arrange reinforcing steel bars is described. Reinforced bearing masonry walls, made with the concrete units in question, were manufactured and tests on the panels and on the designed units were carried out. For comparison, tests on concrete units and structural elements were carried out after the substitution of pumice aggregates with ordinary lightweight aggregates, proving that pumice can be considered an alternative to them. Sommario. L’uso della pomice come inerte per il confezionamento di calcestruzzo è poco diffuso sebbene essa sia stata usata già in antiche costruzioni come il Pantheon in Roma. In questo studio si affronta la possibilità di realizzare blocchi in calcestruzzo alleggerito con granuli di pomice. I blocchi, progettati e realizzati secondo le indicazioni normative correnti, sono stati usati per realizzare pannelli murari armati da sottoporre a carichi ciclici orizzontali. I risultati ottenuti, messi a confronto con quelli di pannelli realizzati con blocchi in cls alleggerito con argilla espansa, hanno mostrato la possibilità di utilizzare la pomice come validissima alternativa all’argilla espansa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Externally bonding of FRP composites is an effective technique for retrofitting historical masonry arch structures. A major failure mode in such strengthened structures is the debonding of FRP from the masonry. The bond behaviour between FRP and masonry thus plays a crucial role in these structures. Major challenges exist in the finite element modelling of such structures, such as modelling of mixed Mode-I and Mode-II bond behaviour between the FRP and the curved masonry substrate, modelling of existing damages in the masonry arches, consideration of loading history in the unstrengthened and strengthened structure etc. This paper presents a rigorous FE model for simulating FRP strengthened masonry arch structures. A detailed solid model was developed for simulating the masonry and a mixed-mode interface model was used for simulating the FRP-to-masonry bond behaviour. The model produces results in very close agreement with test results.