927 resultados para Markov Model with Monte-Carlo microsimulations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.

In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.

We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of radiation backscattered from the secondary collimators into the monitor chamber in an Elekta linac (producing 6 and 10 MV photon beams) are investigated using BEAMnrc Monte Carlo simulations. The degree and effects of this backscattered radiation are assessed by evaluating the changes to the calculated dose in the monitor chamber, and by determining a correction factor for those changes. Additionally, the fluency and energy characteristics of particles entering the monitor chamber from the downstream direction are evaluated by examining BEAMnrc phase-space data. It is shown that the proportion of particles backscattered into the monitor chamber is small (<0.35 %), for all field sizes studied. However, when the backscatter plate is removed from the model linac, these backscattered particles generate a noticeable increase in dose to the monitor chamber (up to approximate to 2.4 % for the 6 MV beam and up to 4.4 % for the 10 MV beam). With its backscatter plate in place, the Elekta linac (operating at 6 and 10 MV) is subject to negligible variation of monitor chamber dose with field size. At these energies, output variations in photon beams produced by the clinical Elekta linear accelerator can be attributed to head scatter alone. Corrections for field-size-dependence of monitor chamber dose are not necessary when running Monte Carlo simulations of the Elekta linac operating at 6 and 10 MV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Thai written language is one of the languages that does not have word boundaries. In order to discover the meaning of the document, all texts must be separated into syllables, words, sentences, and paragraphs. This paper develops a novel method to segment the Thai text by combining a non-dictionary based technique with a dictionary-based technique. This method first applies the Thai language grammar rules to the text for identifying syllables. The hidden Markov model is then used for merging possible syllables into words. The identified words are verified with a lexical dictionary and a decision tree is employed to discover the words unidentified by the lexical dictionary. Documents used in the litigation process of Thai court proceedings have been used in experiments. The results which are segmented words, obtained by the proposed method outperform the results obtained by other existing methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The population Monte Carlo algorithm is an iterative importance sampling scheme for solving static problems. We examine the population Monte Carlo algorithm in a simplified setting, a single step of the general algorithm, and study a fundamental problem that occurs in applying importance sampling to high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of estimate under conditions on the importance function. We demonstrate the exponential growth of the asymptotic variance with the dimension and show that the optimal covariance matrix for the importance function can be estimated in special cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis applies Monte Carlo techniques to the study of X-ray absorptiometric methods of bone mineral measurement. These studies seek to obtain information that can be used in efforts to improve the accuracy of the bone mineral measurements. A Monte Carlo computer code for X-ray photon transport at diagnostic energies has been developed from first principles. This development was undertaken as there was no readily available code which included electron binding energy corrections for incoherent scattering and one of the objectives of the project was to study the effects of inclusion of these corrections in Monte Carlo models. The code includes the main Monte Carlo program plus utilities for dealing with input data. A number of geometrical subroutines which can be used to construct complex geometries have also been written. The accuracy of the Monte Carlo code has been evaluated against the predictions of theory and the results of experiments. The results show a high correlation with theoretical predictions. In comparisons of model results with those of direct experimental measurements, agreement to within the model and experimental variances is obtained. The code is an accurate and valid modelling tool. A study of the significance of inclusion of electron binding energy corrections for incoherent scatter in the Monte Carlo code has been made. The results show this significance to be very dependent upon the type of application. The most significant effect is a reduction of low angle scatter flux for high atomic number scatterers. To effectively apply the Monte Carlo code to the study of bone mineral density measurement by photon absorptiometry the results must be considered in the context of a theoretical framework for the extraction of energy dependent information from planar X-ray beams. Such a theoretical framework is developed and the two-dimensional nature of tissue decomposition based on attenuation measurements alone is explained. This theoretical framework forms the basis for analytical models of bone mineral measurement by dual energy X-ray photon absorptiometry techniques. Monte Carlo models of dual energy X-ray absorptiometry (DEXA) have been established. These models have been used to study the contribution of scattered radiation to the measurements. It has been demonstrated that the measurement geometry has a significant effect upon the scatter contribution to the detected signal. For the geometry of the models studied in this work the scatter has no significant effect upon the results of the measurements. The model has also been used to study a proposed technique which involves dual energy X-ray transmission measurements plus a linear measurement of the distance along the ray path. This is designated as the DPA( +) technique. The addition of the linear measurement enables the tissue decomposition to be extended to three components. Bone mineral, fat and lean soft tissue are the components considered here. The results of the model demonstrate that the measurement of bone mineral using this technique is stable over a wide range of soft tissue compositions and hence would indicate the potential to overcome a major problem of the two component DEXA technique. However, the results also show that the accuracy of the DPA( +) technique is highly dependent upon the composition of the non-mineral components of bone and has poorer precision (approximately twice the coefficient of variation) than the standard DEXA measurements. These factors may limit the usefulness of the technique. These studies illustrate the value of Monte Carlo computer modelling of quantitative X-ray measurement techniques. The Monte Carlo models of bone densitometry measurement have:- 1. demonstrated the significant effects of the measurement geometry upon the contribution of scattered radiation to the measurements, 2. demonstrated that the statistical precision of the proposed DPA( +) three tissue component technique is poorer than that of the standard DEXA two tissue component technique, 3. demonstrated that the proposed DPA(+) technique has difficulty providing accurate simultaneous measurement of body composition in terms of a three component model of fat, lean soft tissue and bone mineral,4. and provided a knowledge base for input to decisions about development (or otherwise) of a physical prototype DPA( +) imaging system. The Monte Carlo computer code, data, utilities and associated models represent a set of significant, accurate and valid modelling tools for quantitative studies of physical problems in the fields of diagnostic radiology and radiography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different international plant protection organisations advocate different schemes for conducting pest risk assessments. Most of these schemes use structured questionnaire in which experts are asked to score several items using an ordinal scale. The scores are then combined using a range of procedures, such as simple arithmetic mean, weighted averages, multiplication of scores, and cumulative sums. The most useful schemes will correctly identify harmful pests and identify ones that are not. As the quality of a pest risk assessment can depend on the characteristics of the scoring system used by the risk assessors (i.e., on the number of points of the scale and on the method used for combining the component scores), it is important to assess and compare the performance of different scoring systems. In this article, we proposed a new method for assessing scoring systems. Its principle is to simulate virtual data using a stochastic model and, then, to estimate sensitivity and specificity values from these data for different scoring systems. The interest of our approach was illustrated in a case study where several scoring systems were compared. Data for this analysis were generated using a probabilistic model describing the pest introduction process. The generated data were then used to simulate the outcome of scoring systems and to assess the accuracy of the decisions about positive and negative introduction. The results showed that ordinal scales with at most 5 or 6 points were sufficient and that the multiplication-based scoring systems performed better than their sum-based counterparts. The proposed method could be used in the future to assess a great diversity of scoring systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiotherapy is a cancer treatment modality in which a dose of ionising radiation is delivered to a tumour. The accurate calculation of the dose to the patient is very important in the design of an effective therapeutic strategy. This study aimed to systematically examine the accuracy of the radiotherapy dose calculations performed by clinical treatment planning systems by comparison againstMonte Carlo simulations of the treatment delivery. A suite of software tools known as MCDTK (Monte Carlo DICOM ToolKit) was developed for this purpose, and is capable of: • Importing DICOM-format radiotherapy treatment plans and producing Monte Carlo simulation input files (allowing simple simulation of complex treatments), and calibrating the results; • Analysing the predicted doses of and deviations between the Monte Carlo simulation results and treatment planning system calculations in regions of interest (tumours and organs-at-risk) and generating dose-volume histograms, so that conformity with dose prescriptions can be evaluated. The code has been tested against various treatment planning systems, linear acceleratormodels and treatment complexities. Six clinical head and neck cancer treatments were simulated and the results analysed using this software. The deviations were greatest where the treatment volume encompassed tissues on both sides of an air cavity. This was likely due to the method the planning system used to model low density media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of tumour motion during radiation therapy delivery have been widely investigated. Motion effects have become increasingly important with the introduction of dynamic radiotherapy delivery modalities such as enhanced dynamic wedges (EDWs) and intensity modulated radiation therapy (IMRT) where a dynamically collimated radiation beam is delivered to the moving target, resulting in dose blurring and interplay effects which are a consequence of the combined tumor and beam motion. Prior to this work, reported studies on the EDW based interplay effects have been restricted to the use of experimental methods for assessing single-field non-fractionated treatments. In this work, the interplay effects have been investigated for EDW treatments. Single and multiple field treatments have been studied using experimental and Monte Carlo (MC) methods. Initially this work experimentally studies interplay effects for single-field non-fractionated EDW treatments, using radiation dosimetry systems placed on a sinusoidaly moving platform. A number of wedge angles (60º, 45º and 15º), field sizes (20 × 20, 10 × 10 and 5 × 5 cm2), amplitudes (10-40 mm in step of 10 mm) and periods (2 s, 3 s, 4.5 s and 6 s) of tumor motion are analysed (using gamma analysis) for parallel and perpendicular motions (where the tumor and jaw motions are either parallel or perpendicular to each other). For parallel motion it was found that both the amplitude and period of tumor motion affect the interplay, this becomes more prominent where the collimator tumor speeds become identical. For perpendicular motion the amplitude of tumor motion is the dominant factor where as varying the period of tumor motion has no observable effect on the dose distribution. The wedge angle results suggest that the use of a large wedge angle generates greater dose variation for both parallel and perpendicular motions. The use of small field size with a large tumor motion results in the loss of wedged dose distribution for both parallel and perpendicular motion. From these single field measurements a motion amplitude and period have been identified which show the poorest agreement between the target motion and dynamic delivery and these are used as the „worst case motion parameters.. The experimental work is then extended to multiple-field fractionated treatments. Here a number of pre-existing, multiple–field, wedged lung plans are delivered to the radiation dosimetry systems, employing the worst case motion parameters. Moreover a four field EDW lung plan (using a 4D CT data set) is delivered to the IMRT quality control phantom with dummy tumor insert over four fractions using the worst case parameters i.e. 40 mm amplitude and 6 s period values. The analysis of the film doses using gamma analysis at 3%-3mm indicate the non averaging of the interplay effects for this particular study with a gamma pass rate of 49%. To enable Monte Carlo modelling of the problem, the DYNJAWS component module (CM) of the BEAMnrc user code is validated and automated. DYNJAWS has been recently introduced to model the dynamic wedges. DYNJAWS is therefore commissioned for 6 MV and 10 MV photon energies. It is shown that this CM can accurately model the EDWs for a number of wedge angles and field sizes. The dynamic and step and shoot modes of the CM are compared for their accuracy in modelling the EDW. It is shown that dynamic mode is more accurate. An automation of the DYNJAWS specific input file has been carried out. This file specifies the probability of selection of a subfield and the respective jaw coordinates. This automation simplifies the generation of the BEAMnrc input files for DYNJAWS. The DYNJAWS commissioned model is then used to study multiple field EDW treatments using MC methods. The 4D CT data of an IMRT phantom with the dummy tumor is used to produce a set of Monte Carlo simulation phantoms, onto which the delivery of single field and multiple field EDW treatments is simulated. A number of static and motion multiple field EDW plans have been simulated. The comparison of dose volume histograms (DVHs) and gamma volume histograms (GVHs) for four field EDW treatments (where the collimator and patient motion is in the same direction) using small (15º) and large wedge angles (60º) indicates a greater mismatch between the static and motion cases for the large wedge angle. Finally, to use gel dosimetry as a validation tool, a new technique called the „zero-scan method. is developed for reading the gel dosimeters with x-ray computed tomography (CT). It has been shown that multiple scans of a gel dosimeter (in this case 360 scans) can be used to reconstruct a zero scan image. This zero scan image has a similar precision to an image obtained by averaging the CT images, without the additional dose delivered by the CT scans. In this investigation the interplay effects have been studied for single and multiple field fractionated EDW treatments using experimental and Monte Carlo methods. For using the Monte Carlo methods the DYNJAWS component module of the BEAMnrc code has been validated and automated and further used to study the interplay for multiple field EDW treatments. Zero-scan method, a new gel dosimetry readout technique has been developed for reading the gel images using x-ray CT without losing the precision and accuracy.