994 resultados para Markov Branching Process
Resumo:
This paper deals with the long run average continuous control problem of piecewise deterministic Markov processes (PDMPs) taking values in a general Borel space and with compact action space depending on the state variable. The control variable acts on the jump rate and transition measure of the PDMP, and the running and boundary costs are assumed to be positive but not necessarily bounded. Our first main result is to obtain an optimality equation for the long run average cost in terms of a discrete-time optimality equation related to the embedded Markov chain given by the postjump location of the PDMP. Our second main result guarantees the existence of a feedback measurable selector for the discrete-time optimality equation by establishing a connection between this equation and an integro-differential equation. Our final main result is to obtain some sufficient conditions for the existence of a solution for a discrete-time optimality inequality and an ordinary optimal feedback control for the long run average cost using the so-called vanishing discount approach. Two examples are presented illustrating the possible applications of the results developed in the paper.
Diagnostic errors and repetitive sequential classifications in on-line process control by attributes
Resumo:
The procedure of on-line process control by attributes, known as Taguchi`s on-line process control, consists of inspecting the mth item (a single item) at every m produced items and deciding, at each inspection, whether the fraction of conforming items was reduced or not. If the inspected item is nonconforming, the production is stopped for adjustment. As the inspection system can be subject to diagnosis errors, one develops a probabilistic model that classifies repeatedly the examined item until a conforming or b non-conforming classification is observed. The first event that occurs (a conforming classifications or b non-conforming classifications) determines the final classification of the examined item. Proprieties of an ergodic Markov chain were used to get the expression of average cost of the system of control, which can be optimized by three parameters: the sampling interval of the inspections (m); the number of repeated conforming classifications (a); and the number of repeated non-conforming classifications (b). The optimum design is compared with two alternative approaches: the first one consists of a simple preventive policy. The production system is adjusted at every n produced items (no inspection is performed). The second classifies the examined item repeatedly r (fixed) times and considers it conforming if most classification results are conforming. Results indicate that the current proposal performs better than the procedure that fixes the number of repeated classifications and classifies the examined item as conforming if most classifications were conforming. On the other hand, the preventive policy can be averagely the most economical alternative rather than those ones that require inspection depending on the degree of errors and costs. A numerical example illustrates the proposed procedure. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The procedure for online process control by attributes consists of inspecting a single item at every m produced items. It is decided on the basis of the inspection result whether the process is in-control (the conforming fraction is stable) or out-of-control (the conforming fraction is decreased, for example). Most articles about online process control have cited the stoppage of the production process for an adjustment when the inspected item is non-conforming (then the production is restarted in-control, here denominated as corrective adjustment). Moreover, the articles related to this subject do not present semi-economical designs (which may yield high quantities of non-conforming items), as they do not include a policy of preventive adjustments (in such case no item is inspected), which can be more economical, mainly if the inspected item can be misclassified. In this article, the possibility of preventive or corrective adjustments in the process is decided at every m produced item. If a preventive adjustment is decided upon, then no item is inspected. On the contrary, the m-th item is inspected; if it conforms, the production goes on, otherwise, an adjustment takes place and the process restarts in-control. This approach is economically feasible for some practical situations and the parameters of the proposed procedure are determined minimizing an average cost function subject to some statistical restrictions (for example, to assure a minimal levelfixed in advanceof conforming items in the production process). Numerical examples illustrate the proposal.
Resumo:
This work is concerned with the existence of an optimal control strategy for the long-run average continuous control problem of piecewise-deterministic Markov processes (PDMPs). In Costa and Dufour (2008), sufficient conditions were derived to ensure the existence of an optimal control by using the vanishing discount approach. These conditions were mainly expressed in terms of the relative difference of the alpha-discount value functions. The main goal of this paper is to derive tractable conditions directly related to the primitive data of the PDMP to ensure the existence of an optimal control. The present work can be seen as a continuation of the results derived in Costa and Dufour (2008). Our main assumptions are written in terms of some integro-differential inequalities related to the so-called expected growth condition, and geometric convergence of the post-jump location kernel associated to the PDMP. An example based on the capacity expansion problem is presented, illustrating the possible applications of the results developed in the paper.
Resumo:
We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.
Resumo:
In this paper we obtain the linear minimum mean square estimator (LMMSE) for discrete-time linear systems subject to state and measurement multiplicative noises and Markov jumps on the parameters. It is assumed that the Markov chain is not available. By using geometric arguments we obtain a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the error covariance matrix of the LMMSE to a stationary value under the assumption of mean square stability of the system and ergodicity of the associated Markov chain is obtained. It is shown that there exists a unique positive semi-definite solution for the stationary Riccati-like filter equation and, moreover, this solution is the limit of the error covariance matrix of the LMMSE. The advantage of this scheme is that it is very easy to implement and all calculations can be performed offline. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We shall study continuous-time Markov chains on the nonnegative integers which are both irreducible and transient, and which exhibit discernible stationarity before drift to infinity sets in. We will show how this 'quasi' stationary behaviour can be modelled using a limiting conditional distribution: specifically, the limiting state probabilities conditional on not having left 0 for the last time. By way of a dual chain, obtained by killing the original process on last exit from 0, we invoke the theory of quasistationarity for absorbing Markov chains. We prove that the conditioned state probabilities of the original chain are equal to the state probabilities of its dual conditioned on non-absorption, thus allowing us to establish the simultaneous existence and then equivalence, of their limiting conditional distributions. Although a limiting conditional distribution for the dual chain is always a quasistationary distribution in the usual sense, a similar statement is not possible for the original chain.
Resumo:
We shall be concerned with the problem of determining quasi-stationary distributions for Markovian models directly from their transition rates Q. We shall present simple conditions for a mu-invariant measure m for Q to be mu-invariant for the transition function, so that if m is finite, it can be normalized to produce a quasi-stationary distribution. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Ten years ago, an anaerobic ammonium oxidation ('anammox') process was discovered in a denitrifying pilot plant reactor. From this system, a highly enriched microbial community was obtained, dominated by a single deep-branching planctomycete, Candidatus Brocadia anammoxidans. Phylogenetic inventories of different wastewater treatment plants with anammox activity have suggested that at least two genera in Planctomycetales can catalyse the anammox process. Electron microscopy of the ultrastructure of B. anammoxidans has shown that several membrane-bounded compartments are present inside the cytoplasm. Hydroxylamine oxidoreductase, a key anammox enzyme, is found exclusively inside one of these compartments, tentatively named the 'anammoxosome'.
Resumo:
This paper presents a method of evaluating the expected value of a path integral for a general Markov chain on a countable state space. We illustrate the method with reference to several models, including birth-death processes and the birth, death and catastrophe process. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Recently, regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. The development of accurate and reliable segmentation techniques may be essential to improve research outcomes. This work presents an image processing method to measure the perimeter and area of lung branches on fetal rat explants. The algorithm starts by reducing the noise corrupting the image with a pre-processing stage. The outcome is input to a watershed operation that automatically segments the image into primitive regions. Then, an image pixel is selected within the lung explant epithelial, allowing a region growing between neighbouring watershed regions. This growing process is controlled by a statistical distribution of each region. When compared with manual segmentation, the results show the same tendency for lung development. High similarities were harder to obtain in the last two days of culture, due to the increased number of peripheral airway buds and complexity of lung architecture. However, using semiautomatic measurements, the standard deviation was lower and the results between independent researchers were more coherent
Resumo:
Recently, regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. The development of accurate and reliable segmentation techniques may be essential to improve research outcomes. This work presents an image processing method to measure the perimeter and area of lung branches on fetal rat explants. The algorithm starts by reducing the noise corrupting the image with a pre-processing stage. The outcome is input to a watershed operation that automatically segments the image into primitive regions. Then, an image pixel is selected within the lung explant epithelial, allowing a region growing between neighbouring watershed regions. This growing process is controlled by a statistical distribution of each region. When compared with manual segmentation, the results show the same tendency for lung development. High similarities were harder to obtain in the last two days of culture, due to the increased number of peripheral airway buds and complexity of lung architecture. However, using semiautomatic measurements, the standard deviation was lower and the results between independent researchers were more coherent.
Resumo:
We consider an optimal control problem with a deterministic finite horizon and state variable dynamics given by a Markov-switching jump–diffusion stochastic differential equation. Our main results extend the dynamic programming technique to this larger family of stochastic optimal control problems. More specifically, we provide a detailed proof of Bellman’s optimality principle (or dynamic programming principle) and obtain the corresponding Hamilton–Jacobi–Belman equation, which turns out to be a partial integro-differential equation due to the extra terms arising from the Lévy process and the Markov process. As an application of our results, we study a finite horizon consumption– investment problem for a jump–diffusion financial market consisting of one risk-free asset and one risky asset whose coefficients are assumed to depend on the state of a continuous time finite state Markov process. We provide a detailed study of the optimal strategies for this problem, for the economically relevant families of power utilities and logarithmic utilities.
Resumo:
In this paper, we present a stochastic model for disability insurance contracts. The model is based on a discrete time non-homogeneous semi-Markov process (DTNHSMP) to which the backward recurrence time process is introduced. This permits a more exhaustive study of disability evolution and a more efficient approach to the duration problem. The use of semi-Markov reward processes facilitates the possibility of deriving equations of the prospective and retrospective mathematical reserves. The model is applied to a sample of contracts drawn at random from a mutual insurance company.
Resumo:
We study the minimum mean square error (MMSE) and the multiuser efficiency η of large dynamic multiple access communication systems in which optimal multiuser detection is performed at the receiver as the number and the identities of active users is allowed to change at each transmission time. The system dynamics are ruled by a Markov model describing the evolution of the channel occupancy and a large-system analysis is performed when the number of observations grow large. Starting on the equivalent scalar channel and the fixed-point equation tying multiuser efficiency and MMSE, we extend it to the case of a dynamic channel, and derive lower and upper bounds for the MMSE (and, thus, for η as well) holding true in the limit of large signal–to–noise ratios and increasingly large observation time T.