973 resultados para Marine Natural-products
Resumo:
The present work is a revision on the ecological significance of the production of sesquiterpenes by the marine algae of the genus Laurencia (Ceramiales, Rhodophyta).
Resumo:
Herein we describe the isolation of homarine and piridiniumbetaine B from the sponge Aaptos sp. Although homarine has a common occurrence among animals, piridiniumbetaine B was only recently isolated from the marine sponge Agelas dispar. The isolation of piridiniumbetaine B from two taxonomically distant marine sponges corroborate previous assumptions that such betaines should be regarded rather as primary metabolites. We have also isolated (9-[5'-(methylthio)-beta-D-xylofuranosyl]adenine (xylosyl-MTA) from the mantle of a nudibranch identified as Doris aff. verrucosa. The occurrence of xylosyl-MTA in the mantle of this animal strongly suggests that it is the same nudibranch species described for the Mediterranean sea. We have been unable to detect any other compound in the mantle extract of D. aff. verrucosa other than xylosil-MTA and sterols. GC-MS analysis of the sterol fraction from the nudibranch and its prey, the sponge Hymeniacidon aff. heliophila, revealed the occurrence of the ubiquitous sterols, cholesterol, brassicasterol, cholestanol, 24-methylcholesterol and 24-ethylcholesterol, as the only common metabolites, therefore precluding any assumption concerning the sequestration of secondary metabolites by the nudibranch from H. aff. heliophila.
Resumo:
Larnellarins are a group of marine natural products isolated from the prosobranch mollusc Lamellaria sp., the ascidian Didemnum sp., and the sponge Dendrilla Cactos. Several of them exhibit interesting biological activities. Natural as well as synthetic lamellarins should be excellent candidates for the development of new drugs due to their unique skeletal structure and their important biological activities especially as antitumor agents. Lamelarin O has been recently characterized as a topoisomerase 1-targeted anti tumor agent. A variety of synthetic approaches have been developed for this family of alkaloids. Herein we describe a new route to the synthesis of Lamellarin D, from a methyl 2-pyrrolecarboxylate. Transformation of the starting material into the scaffold, a substituted 5,6-dihydropyrrolo (2,l a)isoquinoline (5,6-DHPl), was afforded by N-alkylation followed by intramolecular Heck cyclization. From this scaffold the synthetic strategy is based on two sequential regioselective bromination!Suzuki cross-coupling reactions which permitted the introduction of differently substituted aryl groups on positions 1 and 2 followed by oxidation, deprotection, and lactonization.
Resumo:
The production of volatile organic compounds (VOC) by plants is well known. However, few scientific groups have studied VOC produced by green, brown and red algae. Headspace collection of volatiles and solid phase microextraction, as well as the traditional extraction by hydrodistillation combined with analytical chromatographic techniques (i.e., GC-MS), have significantly improved the investigation of VOC from plants and algae. The major volatile compounds found in seaweeds are hydrocarbons, terpenes, phenols, alcohols, aldehydes, ketones, esters, fatty acids and halogen or sulfur-containing compounds. This article presents an overview of VOC isolated from and identified in marine macro-algae. Focus is given to non-halogenated and non-sulfur volatile compounds, as well as strategies to analyze and identify algal VOC by GC-MS.
Resumo:
CNPq
Resumo:
Marine organisms have been shown to be potential sources of bioactive compounds with pharmaceutical applications. Previous chemical investigation of the nudibranch Tambja eliora led to the isolation of the alkaloid tambjamine D. Tambjamines have been isolated from marine sources and belong to the family of 4-methoxypyrrolic-derived natural products, which display promising immunosuppressive and cytotoxic properties. Their ability to intercalate DNA and their pro-oxidant activity may be related to some of the biological effects of the 4-methoxypyrrolic alkaloids. The aim of the present investigation was to determine the cytotoxic, pro-oxidant and genotoxic properties of tambjamine D in V79 Chinese hamster lung fibroblast cells. Tambjamine D displayed a potent cytotoxic effect in V79 cells (IC50 1.2 mu g/mL) evaluated by the MTT assay. Based on the MTT result, V79 cells were treated with different concentrations of tambjamine D (0.6. 1.2. 2.4 and 4.8 mu g/mL). After 24 h, tambjamine D reduced the number of viable cells in a concentration-dependent way at all concentrations tested. assessed by the trypan blue dye exclusion test. The hemolytic assay showed that the cytotoxic activity of tambjamine D was not related to membrane disruption (EC50 > 100 mu g/mL). Tambjamine D increased the number of apoptotic cells in a concentration-dependent manner at all concentrations tested according to acridine orange/ethidium bromide staining, showing that the alkaloid cytotoxic effect was related to the induction of apoptosis. MTT reduction was stimulated by tambjamine D, which may indicate the generation of reactive oxygen species. Accordingly, treatment of cells with tambjamine D increased nitrite/nitrate at all concentrations and TBARS production starting at the concentration corresponding to the IC50. Tambjamine D, also, induced DNA strand breaks and increased the micronucleus cell frequency as evaluated by comet and micronucleus tests, respectively, at all concentrations evaluated. showing a genotoxic risk induced by tambjamine D. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Endophytic fungi isolated from the red seaweed Bostrychia radicans were studied to identify their molecularly diverse and biologically active natural chemical products. According to 28S ribosomal DNA-based identification, the strain named C81 was 98% identical to Phomopsis longicolla. This strain was cultivated in solid rice medium and produced three major metabolites identified as 18-deoxycytochalasin H (1), mycophenolic acid (2), and dicerandrol C (3). The chemical structures of these compounds were elucidated by 1D and 2D nuclear magnetic resonance as well as by mass spectrometry. Dicerandrol C had significant antimicrobial activity against Staphylococcus aureus (ATCC 6538) and Staphylococcus saprophyticus (ATCC 15305), with minimum inhibitory concentrations of 1 and 2 mu g ml(-1) (1.33 and 2.66 mu M), respectively. These results show the presence of promising metabolites and indicate that these natural products should be considered in the development of new antibiotics.
Resumo:
Several syntheses have already been reported for cis-trikentrins and herbindoles, which are indole alkaloids unsubstituted at the C2 and C3 positions that bear a trans-1,3-dimethylcyclopentyl unit. Herein, we describe the first asymmetric and stereoselective synthesis of the more challenging trans-trikentrin A as its naturally occurring isomer. Different approaches were investigated and the strategy of choice was a combination of an enzymatic kinetic resolution and a thallium(III)-mediated ring contraction. The antiproliferative activities of the natural product and related intermediates have been tested against human tumor cell lines, leading to the discovery of new compounds with potent antitumor activity.
Resumo:
Cyclic peptides containing oxazole and thiazole heterocycles have been examined for their capacity to be used as scaffolds in larger, more complex, protein-like structures. Both the macrocyclic scaffolds and the supramolecular structures derived therefrom have been visualised by molecular modelling techniques. These molecules are too symmetrical to examine structurally by NMR spectroscopy. The cyclic hexapeptide ([Aaa-Thz](3), [Aaa-Oxz](3)) and cyclic octapeptide ([Aaa-Thz](4), [Aaa-Oxz](4)) analogues are composed of dipeptide surrogates (Aaa: amino acid, Thz: thiazole, Oxz: oxazole) derived from intramolecular condensation of cysteine or serine/threonine side chains in dipeptides like Aaa-Cys, Aaa-Ser and Aaa-Thr. The five-membered heterocyclic rings, like thiazole, oxazole and reduced analogues like thiazoline, thiazolidine and oxazoline have profound influences on the structures and bioactivities of cyclic peptides derived therefrom. This work suggests that such constrained cyclic peptides can be used as scaffolds to create a range of novel protein-like supramolecular structures (e.g. cylinders, troughs, cones, multi-loop structures, helix bundles) that are comparable in size, shape and composition to bioactive surfaces of proteins. They may therefore represent interesting starting points for the design of novel artificial proteins and artificial enzymes. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Rabbitfish Siganus fuscescens preferences for Lyngbya majuscula collected from three bloom locations in Moreton Bay, Queensland, Australia, were tested along with a range of local plant species in the laboratory. Consumption of L. majuscula by fish did not differ between wild and captive-bred fish (P = 0.152) but did differ between bloom location (P = 0.039). No relationship was found between consumption rates and lyngbyatoxin-a concentration (r(2) = 0.035, P = 0.814). No correlation existed between C : N and proportion of food consumed when all food types were analysed statistically, whereas a clear correlation was observed when L. majuscula was removed from the calculations. In simulated bloom conditions, fish avoided ingestion of L. majuscula by feeding through gaps in the L. majuscula coverage. Both wild and captive-bred S. fuscescens showed a distinct feeding pattern in 10 day no-choice feeding assays, with less L. majuscula being consumed than the preferred red alga Acanthophora spicifera. Lyngbya majuscula however, was consumed in equal quantities to A. spicifera by wild S. fuscescens when lyngbyatoxin-a was not detectable. Wild fish probably do not preferentially feed on L. majuscula when secondary metabolites are present and are not severely impacted by large L. majuscula blooms in Moreton Bay. Furthermore, poor feeding performance in both captive-bred and wild S. fuscescens suggests that they would exert little pressure as a top-down control agent of toxic L. majuscula blooms within Moreton Bay. (c) 2006 The Fisheries Society of the British Isles.
Resumo:
Five new norsesterterpenes, mooloolabenes A-E (1-5), and the new sesterterpene mooloolaldehyde (6), related to the scalarane family of compounds, were isolated from an acetone extract of the Australian sponge Hyattella intestinalis. Structural elucidation, including relative stereochemical assignment, was based on spectroscopic analysis. All compounds tested showed cytotoxic activity against the P388 cell line.
Resumo:
Trophodynamics of blooms of the toxic marine cyanobacterium Lyngkya majuscula were investigated to determine dietary specificity in two putative grazers: the opisthobranch molluscs, Stylocheilus striatus and Bursatella leachii. S. striatus is associated with L. majuscula blooms and is known to sequester L. majuscula metabolites. The dietary specificity and toxicodynamics of B. leachii in relation to L. majuscula is less well documented. In this study we found diet history had no significant effect upon dietary selectivity of S. striatus when offered a range of plant species. However, L. majuscula chemotype may alter S. striatus' selectivity for this cyanobacterium. Daily biomass increases between small and large size groups of both species were recorded in no-choice consumption trials using L. majuscula. Both S. striatus and B. leachii preferentially consumed L. majuscula containing lyngbyatoxin-a. Increase in mass over a 10-day period in B. leachii (915%) was significantly greater than S. striatus (150%), yet S. striatus consumed greater quantities of L. majuscula (g day(-1)) and thus had a lower conversion efficiency (0.038) than B. leachii (0.081) based on sea hare weight per gram of L. majuscula consumed day(-1). Our findings suggest that growth rates and conversion efficiencies may be influenced by sea hare maximum growth potential, acquisition of secondary metabolites or diet type. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
This thesis details the design, development and execution of innovative methodology in the total synthesis of the terpene-derived marine natural product, furospongolide. It also outlines the synthetic routes used to prepare a novel range of furanolipids derivatives and subsequent evaluation of their potential as antitumour agents. The first chapter is a review of the literature describing efforts undertaken towards the synthesis of biologically active furanosesterterpenoid marine natural products. A brief discussion on the sources and biological activity exhibited by furan natural products is also provided. In addition, a concise account of the role of hypoxia in cancer, and the increasing interest in HIF-1 inhibition as a target for chemotherapeutics is examined. The second chapter discusses the concise synthesis of the marine HIF-1 inhibitor furospongolide, which was achieved in five linear steps from (E,E)-farnesyl acetate. The synthetic strategy features a selective oxidation reaction, a Schlosser sp3-sp3 cross-coupling, a Wittig cross-coupling and an elaborate one-pot selective reduction, lactonisation and isomerization reaction to install the butenolide ring. The structure-activity relationship of furospongolide was also investigated. This involved the design and synthesis of a library of structurally modified analogues sharing the same C1-C13 subunit. This was achieved by exploiting the brevity and high level of convergence of our synthetic route together with the readily amenable structure of our target molecule. Exploiting the Schlosser cross-coupling allowed for replacement of furan with other heterocycles in the preparation of various furanolipid and thiophenolipid derivatives. The employment of reductive amination and Wittig chemistry further added to our novel library of structural derivatives. The third chapter discusses the results obtained from the NCI from biological evaluation From a collection of 28 novel compounds evaluated against the NCI-60 cancer cell array, six drug candidates were successfully selected for further biological evaluation on the basis of antitumour activity. COMPARE analysis revealed a strong correlation between some of our design analogues and the blockbuster anticancer agent tamoxifen, further supporting the potential of furanolipids in the treatment of breast cancer. The fourth chapter, details the full experimental procedures, including spectroscopic and analytical data for all the compounds prepared during this research.
Resumo:
Heterotrophic feeding has an important role in the processes of growth and reproduction of mixotrophic corals. The soft coral Sarcophyton cf. glaucum is a good candidate for aquaculture due to its economic interest for the marine aquarium trade and for the bioprospection of marine natural products. The lack of information on heterotrophic feeding of this species with preserved microalgae conducted to development of this work. The present study aimed to evaluate the effect of the conservation processes of microalgae in its suitability as heterotrophic feeding for the mixotrophic coral S. cf. glaucum. Additionally, we aimed to identify the most suitable freeze-dried microalgae species and cell density to be employed in the culture of this mixotrophic coral species. Two experiments were performed: in the first experiment the microalgae Nannochloropsis oculata was supplied to coral fragments in three different preservation forms (live paste, frozen and freeze-dried) at the concentration of 106 cell mL-1; in the second experiment three different microalgae species (Nannochloropsis oculata, Isochrysis galbana and Phaeodactylum tricornutum) were tested in two different amounts: 7.33 mg L-1 (corresponding to the concentration of 106 cell mL-1 of Nannochloropsis oculata) and 3.66 mg L-1. Growth rate, survival, organic weight and photobiology of coral fragments, as well as water quality in culture tanks, were evaluated in both experiments. Preserved forms of microalgae did not demonstrated differences in growth rate, organic weight and survival rate of coral fragments, but affected water quality. Freeze-dried microalgae seems to be a good feed supply for coral aquaculture, as it has the best results and it has the higher shell-life time and the lower associated costs. Between the species evaluated in second experiment, Isochrysis galbana promoted higher specific growth rate and higher percentage of organic weight in the coral fragments; additionally the culture tanks supplied with this microalgae species also presented a better water quality in the end of the experiment.
Resumo:
The purine ring system is one of the most widely distributed N-heterocycles in Nature [1] and many structurally modified purine nucleosides and nucleotides have activities ranging from antineoplastic and antiviral to antihypertensive, antiasthmatic, antituberculosis, etc [2]. Among the purine derivatives, we have put our attention on natural N-alkylpurines such as the asmarines or agelasimines, a group of secondary metabolites isolated from marine sponges with very interesting biological properties [3]. They have a diterpenoid moiety attached to the N-7 nitrogen atom of an adenine and are usually isolated in very small quantities, which limited their structure-activity relationship studies. Our research group has been involved for years in the design, synthesis and biological evaluation of cytotoxic compounds related to natural products, including the chemoinduction of bioactivity on inactive terpenoids [4]. These diterpenoid include compounds such as communic or cupressic acids that bear decaline moieties very close to those present in the above-mentioned marine natural products. These facts prompted us to design and prepare new terpenylpurine derivatives starting from natural monoterpenoids and diterpenoids, commercially available or isolated from their natural sources and transformed into appropriate alkylated agents. Thus, we have prepared purines alkylated at N-7 and N-9 positions with isoprenoids, monoterpenoids and diterpenoids, using two different synthetic approaches: from 6-chloropurine or from 4,5-diamine-6-chloropyrimidine. The structure of the synthesized purines are shown in the following figure. The purine analogues synthesized have been evaluated for their cytotoxicity against four tumour human cell lines (breast, non-small lung, cervical and hepatocellular carcinoma) and non-tumour cells (porcine liver primary cells). The most cytotoxic derivatives were those with a diterpenoid rest on the purine. The results obtained allowed to draw conclusions on the structure-activity relationship of the compounds in order to evaluate the influence of the terpenyl size on their cytotoxic properties.