978 resultados para Manipulation néonatale


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the normal form of the covariance matrix for three-mode tripartite Gaussian states. By means of this result, the general form of a necessary and sufficient criterion for the possibility of a state transformation from one tripartite entangled Gaussian state to another with three modes is found. Moreover, we show that the conditions presented include not only inequalities but equalities as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved Faraday rotation spectroscopy is currently exploited as a powerful technique to probe spin dynamics in semiconductors. We propose here an all-optical approach to geometrically manipulate electron spin and to detect the geometric phase by this type of extremely sensitive experiment. The global nature of the geometric phase can make the quantum manipulation more stable, which may find interesting applications in quantum devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of segmented all-Pt nanowires is achieved by a template-assisted method. The combination of a suitably chosen electrolyte/template system with pulse-reverse electrodeposition allows the formation of well-defined segments linked to nanowires. Manipulation of the morphology is obtained by controlling the electrokinetie effects on the local electrolyte distribution inside the nanochannels during the nanowire growth process, allowing a deviation from the continuously cylindrical geometry given by the nanoporous template. The length of the segments can be adjusted as a function of the cathodic pulse duration. Applying constant pulses leads to segments with homogeneous shape and dimensions along most of the total wire length. X-ray diffraction demonstrates that the preferred crystallite orientation of the polycrystalline wires varies with the average segment length. The results are explained considering transitions in texture formation with increasing thickness of the electrodeposit. A mechanism of segment formation is proposed based on structural characterizations. Nanowires with controlled segmented morphology are of great technological importance, because of the possibility to precisely control their substructure as a means of tuning their electrical, thermal, and optical properties. The concept we present in this work for electrodeposited platinum and track-etched polycarbonate membranes can be applied to other selected materials as well as templates and constitutes a general method to controlled nanostructuring and synthesis of shape controlled nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant cell cultures have been suggested as a feasible technology for the production of a myriad of plant-derived metabolites. However, commercial application of plant cell culture has met limited success with only a handful of metabolites produced at the pilot- and commercial-scales. To improve the production of secondary metabolites in plant cell cultures, efforts have been devoted predominantly to the optimization of biosynthetic pathways by both process and genetic engineering approaches. Given that secondary metabolism includes-the synthesis. metabolism and catabolism of endogenous compounds by the specialized proteins, this review intends to draw attention to the manipulation and optimization of post-biosynthetic events that follow the formation of core metabolite structures in biosynthetic pathways. These post-biosynthetic events-the chemical and enzymatic modifications, transport, storage/secretion and catabolism/degradation have been largely unexplored in the past. Potential areas are identified where further research is needed to answer fundamental questions that have implications for advanced bioprocess design. Anthocyanin production by plant cell cultures is used as a case study for this discussion, as it presents a good example of compounds for which there are extensive research publications but still no commercial bioprocess. It is perceived that research on post-biosynthetic processes may lead to future opportunities for significant advances in commercial plant cell cultures. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified tapping mode of the atomic force microscope (AFM) was introduced for manipulation, dissection, and lithography. By sufficiently decreasing the amplitude of AFM tip in the normal tapping mode and adjusting the setpoint, the tip-sample interaction can be efficiently controlled. This modified tapping mode has some characteristics of the AFM contact mode and can be used to manipulate nanoparticles, dissect biomolecules, and make lithographs on various surfaces. This method did not need any additional equipment and it can be applied to any AFM system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manipulation of electroosmotic flow in capillary electrophoresis is an important step for separation of inorganic anions. The type. and concentration of electroosmotic flow modifier (OFM) exert a tremendous influence on the electroosmotic mobility. In the presence of CTAB as buffer solutions' pH values increase, the electroosmotic mobility becomes lower. At the same ionic strength, the buffer type affects the electroosmotic velocity and the migration order for iodide and iodate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Whole-Arm Manipulator uses every surface to both sense and interact with the environment. To facilitate the analysis and control of a Whole-Arm Manipulator, line geometry is used to describe the location and trajectory of the links. Applications of line kinematics are described and implemented on the MIT Whole-Arm Manipulator (WAM-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to conduct a systematic review to identify the randomized clinical studies that had investigated the following research question: Is the mandibular manipulation technique an effective and safe technique for the treatment of the temporomandibular joint disk displacement without reduction? the systematic search was conducted in the electronic databases: PubMed (Medical Publications), LILACS (Latin American and Caribbean Literature in Health Sciences), EMBASE (Excerpta Medica Database), PEDro (Physiotherapy Evidence Database), BBO (Brazilian Library of Odontology), CENTRAL (Library Cochrane), and SciELO (Scientific Electronic Library Online). the abstracts of presentations in physical therapy meetings were manually selected, and the articles of the ones that meet the requirements were investigated. No language restrictions were considered. Only randomized and controlled clinical studies were included. Two studies of medium quality fulfilled all the inclusion criteria. There is no sufficient evidence to support the effectiveness of the mandibular manipulation therapy, and therefore its use remains questionable. Being minimally invasive, this therapy is attractive as an initial approach, especially considering the cost of the alternative approaches. the analysis of the results suggests that additional high-quality randomized clinical trials are necessary on the topic, and they should focus on methods for data randomization and allocation, on clearly defined outcomes, on a priori calculated sample size, and on an adequate follow-up strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T. G. Williams, J.J. Rowland, and Lee M.H., Teaching from Examples in Assembly and Manipulation of Snack Food Ingredients by Robot, Proc. IEEE/RSJ Int. Conf. on Robots and Systems (IROS 2001), Nov., 2001, pp2300-2305.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important component of this Ph.D. thesis was to determine the European consumers’ views on processed meats and bioactive compounds. Thus a survey gathered information form over 500 respondents and explored their perceptions on the healthiness and purchase-ability for both traditional and functional processed meats. This study found that the consumer was distrustful towards processed meat, especially high salt and fat content. Consumers were found to be very pro-bioactive compounds in yogurt style products but unsure of their feelings on the idea of them in meat based products, which is likely due to the lack of familiarity to these products. The work in this thesis also centred on the applied acceptable reduction of salt and fat in terms of consumer sensory analysis. The products chosen ranged in the degree of comminution, from a coarse beef patty to a more fine emulsion style breakfast sausage and frankfurter. A full factorial design was implemented which saw the production of twenty beef patties with varying concentrations of fat (30%, 40%, 50%, 60% w/w) and salt (0.5%, 0.75%, 1.0%, 1.25%, 1.5% w/w). Twenty eight sausage were also produced with varying concentrations of fat (22.5%, 27.5%, 32.5%, 37.5% w/w) and salt (0.8%, 1%, 1.2%, 1.4%, 1.6%, 2%, 2.4% w/w). Finally, twenty different frankfurters formulations were produced with varying concentrations of fat (10%, 15%, 20%, 25% w/w) and salt (1%, 1.5%, 2%, 2.5%, 3% w/w). From these products it was found that the most consumer acceptable beef patty was that containing 40% fat with a salt level of 1%. This is a 20% decrease in fat and a 50% decrease in salt levels when compared to commercial patty available in Ireland and the UK. For sausages, salt reduced products were rated by the consumers as paler in colour, more tender and with greater meat flavour than higher salt containing products. The sausages containing 1.4 % and 1.0 % salt were significantly (P<0.01) found to be more acceptable to consumers than other salt levels. Frankfurter salt levels below 1.5% were shown to have a negative effect on consumer acceptability, with 2.5% salt concentration being the most accepted (P<0.001) by consumers. Samples containing less fat and salt were found to be tougher, less juicy and had greater cooking losses. Thus salt perception is very important for consumer acceptability, but fat levels can be potentially reduced without significantly affecting overall acceptability. Overall it can be summarised that the consumer acceptability of salt and fat reduced processed meats depends very much on the product and generalisations cannot be assumed. The study of bio-actives in processed meat products found that the reduced salt/fat patties fortified with CoQ10 were rated as more acceptable than commercially available products for beef patties. The reduced fat and salt, as well as the CoQ10 fortified, sausages were found to compare quite well to their commercial counterparts for overall acceptability, whereas commercial frankfurters were found to be the more favoured in comparison to reduced fat and CoQ10 fortified Frankfurters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is centred on two experimental fields of optical micro- and nanofibre research; higher mode generation/excitation and evanescent field optical manipulation. Standard, commercial, single-mode silica fibre is used throughout most of the experiments; this generally produces high-quality, single-mode, micro- or nanofibres when tapered in a flame-heated, pulling rig in the laboratory. Single mode fibre can also support higher transverse modes, when transmitting wavelengths below that of their defined single-mode regime cut-off. To investigate this, a first-order Laguerre-Gaussian beam, LG01 of 1064 nm wavelength and doughnut-shaped intensity profile is generated free space via spatial light modulation. This technique facilitates coupling to the LP11 fibre mode in two-mode fibre, and convenient, fast switching to the fundamental mode via computer-generated hologram modulation. Following LP11 mode loss when exponentially tapering 125μm diameter fibre, two mode fibre with a cladding diameter of 80μm is selected fir testing since it is more suitable for satisfying the adiabatic criteria for fibre tapering. Proving a fruitful endeavour, experiments show a transmission of 55% of the original LP11 mode set (comprising TE01, TM01, HE21e,o true modes) in submicron fibres. Furthermore, by observing pulling dynamics and progressive mode-lass behaviour, it is possible to produce a nanofibre which supports only the TE01 and TM01 modes, while suppressing the HE21e,o elements of the LP11 group. This result provides a basis for experimental studies of atom trapping via mode-interference, and offers a new set of evanescent field geometries for sensing and particle manipulation applications. The thesis highlights the experimental results of the research unit’s Cold Atom subgroup, who successfully integrated one such higher-mode nanofibre into a cloud of cold Rubidium atoms. This led to the detection of stronger signals of resonance fluorescence coupling into the nanofibre and for light absorption by the atoms due to the presence of higher guided modes within the fibre. Theoretical work on the impact of the curved nanofibre surface on the atomic-surface van der Waals interaction is also presented, showing a clear deviation of the potential from the commonly-used flat-surface approximation. Optical micro- and nanofibres are also useful tools for evanescent-field mediated optical manipulation – this includes propulsion, defect-induced trapping, mass migration and size-sorting of micron-scale particles in dispersion. Similar early trapping experiments are described in this thesis, and resulting motivations for developing a targeted, site-specific particle induction method are given. The integration of optical nanofibres into an optical tweezers is presented, facilitating individual and group isolation of selected particles, and their controlled positioning and conveyance in the evanescent field. The effects of particle size and nanofibre diameter on pronounced scattering is experimentally investigated in this systems, as are optical binding effects between adjacent particles in the evanescent field. Such inter-particle interactions lead to regulated self-positioning and particle-chain speed enhancements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photonic integration has become an important research topic in research for applications in the telecommunications industry. Current optical internet infrastructure has reached capacity with current generation dense wavelength division multiplexing (DWDM) systems fully occupying the low absorption region of optical fibre from 1530 nm to 1625 nm (the C and L bands). This is both due to an increase in the number of users worldwide and existing users demanding more bandwidth. Therefore, current research is focussed on using the available telecommunication spectrum more efficiently. To this end, coherent communication systems are being developed. Advanced coherent modulation schemes can be quite complex in terms of the number and array of devices required for implementation. In order to make these systems viable both logistically and commercially, photonic integration is required. In traditional DWDM systems, arrayed waveguide gratings (AWG) are used to both multiplex and demultiplex the multi-wavelength signal involved. AWGs are used widely as they allow filtering of the many DWDM wavelengths simultaneously. However, when moving to coherent telecommunication systems such as coherent optical frequency division multiplexing (OFDM) smaller FSR ranges are required from the AWG. This increases the size of the device which is counter to the miniaturisation which integration is trying to achieve. Much work was done with active filters during the 1980s. This involved using a laser device (usually below threshold) to allow selective wavelength filtering of input signals. By using more complicated cavity geometry devices such as distributed feedback (DFB) and sampled grating distributed Bragg gratings (SG-DBR) narrowband filtering is achievable with high suppression (>30 dB) of spurious wavelengths. The active nature of the devices also means that, through carrier injection, the index can be altered resulting in tunability of the filter. Used above threshold, active filters become useful in filtering coherent combs. Through injection locking, the coherence of the filtered wavelengths with the original comb source is retained. This gives active filters potential application in coherent communication system as demultiplexers. This work will focus on the use of slotted Fabry-Pérot (SFP) semiconductor lasers as active filters. Experiments were carried out to ensure that SFP lasers were useful as tunable active filters. In all experiments in this work the SFP lasers were operated above threshold and so injection locking was the mechanic by which the filters operated. Performance of the lasers under injection locking was examined using both single wavelength and coherent comb injection. In another experiment two discrete SFP lasers were used simultaneously to demultiplex a two-line coherent comb. The relative coherence of the comb lines was retained after demultiplexing. After showing that SFP lasers could be used to successfully demultiplex coherent combs a photonic integrated circuit was designed and fabricated. This involved monolithic integration of a MMI power splitter with an array of single facet SFP lasers. This device was tested much in the same way as the discrete devices. The integrated device was used to successfully demultiplex a two line coherent comb signal whilst retaining the relative coherence between the filtered comb lines. A series of modelling systems were then employed in order to understand the resonance characteristics of the fabricated devices, and to understand their performance under injection locking. Using this information, alterations to the SFP laser designs were made which were theoretically shown to provide improved performance and suitability for use in filtering coherent comb signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of late, the magnetic properties of micro/nano-structures have attracted intense research interest both fundamentally and technologically particularly to address the question that how the manipulation in the different layers of nanostructures, geometry of a patterned structure can affect the overall magnetic properties, while generating novel applications such as in magnetic sensors, storage devices, integrated inductive components and spintronic devices. Depending on the applications, materials with high, medium or low magnetic anisotropy and their possible manipulation are required. The most dramatic manifestation in this respect is the chance to manipulate the magnetic anisotropy over the intrinsic preferential direction of the magnetization, which can open up more functionality particularly for device applications. Types of magnetic anisotropies of different nanostructured materials and their manipulation techniques are investigated in this work. Detail experimental methods for the quantitative determination of magnetic anisotropy in nanomodulated Ni45Fe55 thin film are studied. Magnetic field induced in-plane rotations within the nanomodulated Ni45Fe55 continuous films revealed various rotational symmetries of magnetic anisotropy due to dipolar interactions showing a crossover from lower to higher fold of symmetry as a function of modulation geometry. In a second approach, the control of exchange anisotropy at ferromagnetic (FM) – aniferomagnetic (AFM) interface in multifferoic nanocomposite materials, where two different phase/types of materials were simultaneously synthesized, was investigated. The third part of this work was to study the electroplated thin films of metal alloy nanocomposite for enhanced exchange anisotropy. In this work a unique observation of an anti-clock wise as well as a clock wise hysteresis loop formation in the Ni,Fe solid solution with very low coercivity and large positive exchange anisotropy/exchange bias have been investigated. Hence, controllable positive and negative exchange anisotropy has been observed for the first time which has high potential applications such as in MRAM devices.