918 resultados para Mangrove ecology - Victoria
Resumo:
The paradigm that mangroves are critical for sustaining production in coastal fisheries is widely accepted, but empirical evidence has been tenuous. This study showed that links between mangrove extent and coastal fisheries production could be detected for some species at a broad regional scale (1000s of kilometres) on the east coast of Queensland, Australia. The relationships between catch-per-unit-effort for different commercially caught species in four fisheries (trawl, line, net and pot fisheries) and mangrove characteristics, estimated from Landsat images were examined using multiple regression analyses. The species were categorised into three groups based on information on their life history characteristics, namely mangrove-related species (banana prawns Penaeus merguiensis, mud crabs Scylla serrata and barramundi Lates calcarifer), estuarine species (tiger prawns Penaeus esculentus and Penaeus semisulcatus, blue swimmer crabs Portunus pelagicus and blue threadfin Eleutheronema tetradactylum) and offshore species (coral trout Plectropomus spp.). For the mangrove-related species, mangrove characteristics such as area and perimeter accounted for most of the variation in the model; for the non-mangrove estuarine species, latitude was the dominant parameter but some mangrove characteristics (e.g. mangrove perimeter) also made significant contributions to the models. In contrast, for the offshore species, latitude was the dominant variable, with no contribution from mangrove characteristics. This study also identified that finer scale spatial data for the fisheries, to enable catch information to be attributed to a particular catchment, would help to improve our understanding of relationships between mangroves and fisheries production. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora maugle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha(-1) in dwarf forests to 194.3 Mg ha(-1) in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes.
A Site Description of the CARICOMP Mangrove, Seagrass and Coral Reef Sites in Bocas del Toro, Panama
Resumo:
Bocas del Toro is located in the western region of the Republic of Panama. It is part of a province of approximately 8917 km(2) with an estimated 68% of its area covered by tropical rainforest. The area receives 2870 mm/year of rainfall. The dry and rainy seasons are not clearly defined. There are two periods each of low and high rainfall, March and September-October, and July and December, respectively. Mangrove forests, seagrass meadows and coral reefs are vast, covering large areas in the shallow waters surrounding the islands of the archipelago and along the mainland coast. The CARICOMP sites were established in 1998-99 and are periodically monitored following Level I protocol. Herein we describe the sites in a regional context and present the baseline data for each site. This paper fulfills the requirements of the formal site description for CARICOMP monitoring sites.
Resumo:
Gap succession is a significant determinant of structure and development in most forest communities. Lightning strikes are an important source of canopy gaps in the mangrove forest of Everglades National Park. I investigated the successional dynamics of lightning-initiated canopy gaps to determine their influence on forest stand structure of the mixed mangrove forests ( Rhizophora mangle, Laguncularia racemosa, and Avicennia germinans ) of the Shark River. I measured gap size, gap shape, light environment, soil characteristics, woody debris, and fiddler crab abundance. I additionally measured the vegetative composition in a chronosequences of gap successional stages (new, recruiting, and growing gaps). I recorded survivorship, recruitment, growth and soil elevation dynamics within a subset of new and growing gaps. I determined the relationship between intact forest soil elevation and site hydrology in order to interpret the effects of lightning disturbance on soil elevation dynamics. ^ Gap size averaged 289 ± 20 m2 (± 1SE) and light transmittance decreased exponentially as gaps filled with saplings. Fine woody debris was highest in recruiting gaps. Soil strength was lower in the gaps than in the forest. The abundance of large and medium fiddler crab burrows increased linearly with total seedling abundance. Soil surface elevation declined in newly formed lightning gaps; this loss was due to a combination of superficial erosion (8.5 mm) and subsidence (60.9 mm). A distinct two-cohort recruitment pattern was evident in the seedling/sapling surveys, suggesting a partitioning of the succession between individuals present before and after lightning strike. In new gaps, the seedling recruitment rate was twice as high as in forest and the sapling population increased. At the growing gap stage, R. mangle seedling mortality was 10 times greater and sapling mortality was 13 times greater than recruitment. Growing gaps had reduced seedling stem elongation, sapling growth and adult growth. However, a few individuals (R. mangle saplings) were able to recruit into the adult life stage. In conclusion, the high density of R. mangle seedlings and saplings imply that lightning strike disturbances in these mangrove forests favor their recruitment over that of A. germinans and L. racemosa. ^
Resumo:
Woody debris is abundant in hurricane-impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line-intercept woody debris surveys conducted in mangrove wetlands of South Florida 9–10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post-hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ≤0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings.
Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest
Resumo:
1. Large pools of dead wood in mangrove forests following disturbances such as hurricanes may influence nutrient fluxes. We hypothesized that decomposition of wood of mangroves from Florida, USA (Avicennia germinans, Laguncularia racemosa and Rhizophora mangle), and the consequent nutrient dynamics, would depend on species, location in the forest relative to freshwater and marine influences and whether the wood was standing, lying on the sediment surface or buried. 2. Wood disks (8–10 cm diameter, 1 cm thick) from each species were set to decompose at sites along the Shark River, either buried in the sediment, on the soil surface or in the air (above both the soil surface and high tide elevation). 3. A simple exponential model described the decay of wood in the air, and neither species nor site had any effect on the decay coefficient during the first 13 months of decomposition. 4. Over 28 months of decomposition, buried and surface disks decomposed following a two-component model, with labile and refractory components. Avicennia germinans had the largest labile component (18 ± 2% of dry weight), while Laguncularia racemosa had the lowest (10 ± 2%). Labile components decayed at rates of 0.37–23.71% month−1, while refractory components decayed at rates of 0.001–0.033% month−1. Disks decomposing on the soil surface had higher decay rates than buried disks, but both were higher than disks in the air. All species had similar decay rates of the labile and refractory components, but A. germinans exhibited faster overall decay because of a higher proportion of labile components. 5. Nitrogen content generally increased in buried and surface disks, but there was little change in N content of disks in the air over the 2-year study. Between 17% and 68% of total phosphorus in wood leached out during the first 2 months of decomposition, with buried disks having the greater losses, P remaining constant or increasing slightly thereafter. 6. Newly deposited wood from living trees was a short-term source of N for the ecosystem but, by the end of 2 years, had become a net sink. Wood, however, remained a source of P for the ecosystem. 7. As in other forested ecosystems, coarse woody debris can have a significant impact on carbon and nutrient dynamics in mangrove forests. The prevalence of disturbances, such as hurricanes, that can deposit large amounts of wood on the forest floor accentuates the importance of downed wood in these forests.
Resumo:
Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a −1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration.
Does landscape context affect habitat value? The importance of seascape ecology in back-reef systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.
Resumo:
Florida Bay is more saline than it was historically, and reduced freshwater flows may lead to more phosphorus inputs to the mangrove ecotone from the marine end-member. This is important given plans to restore freshwater flow into eastern Florida Bay. We investigated the relationships between salinity, nutrients, and hydrologic variables in the mangrove ecotone of Taylor Slough. We expected that total phosphorus (TP) would increase with salinity, reflecting a downstream marine source, while total nitrogen (TN) would increase with flow in the mangrove ecotone. Despite expectations of increased flows improving the ecological health of lower Taylor Slough and Florida Bay, total nitrogen (TN) and total phosphorus (TP) dynamics may shift in response to new conditions of flow and salinity as well as organic carbon, N, and P availability. Our results showed that TP concentrations are more discharge-driven while TN is more variable and potentially derived from different sources along the flow path from the freshwater Everglades marshes to Florida Bay. Increased flow of freshwater through Taylor Slough will likely decrease TP concentrations in this historically oligotrophic and P-limited ecosystem. However, more studies along the mangrove ecotone is needed to understand how increased flows will affect nitrogen dynamics relative to phosphorus.
Resumo:
Mangroves play an important role in carbon sequestration, but soil organic carbon (SOC) stocks differ between marine and estuarine mangroves, suggesting differing processes and drivers of SOC accumulation. Here, we compared undegraded and degraded marine and estuarine mangroves in a regional approach across the Indonesian archipelago for their SOC stocks and evaluated possible drivers imposed by nutrient limitations along the land-to-sea gradients. SOC stocks in natural marine mangroves (271–572 Mg ha-1 m-1 were much higher than under estuarine mangroves (100–315 Mg ha-1 m-1 with a further decrease caused by degradation to 80–132 Mg ha-1 m-1. Soils differed in C/N ratio (marine: 29–64; estuarine: 9–28), δ15N (marine: 0.6 to 0.7‰; estuarine: 2.5 to 7.2‰), and plant-available P (marine: 2.3–6.3 mg kg-1; estuarine: 0.16–1.8 mg kg-1). We found N and P supply of sea-oriented mangroves primarily met by dominating symbiotic N2 fixation from air and P import from sea, while mangroves on the landward gradient increasingly covered their demand in N and P from allochthonous sources and SOM recycling. Pioneer plants favored by degradation further increased nutrient recycling from soil resulting in smaller SOC stocks in the topsoil. These processes explained the differences in SOC stocks along the land-to-sea gradient in each mangrove type as well as the SOC stock differences observed between estuarine and marine mangrove ecosystems. This first large-scale evaluation of drivers of SOC stocks under mangroves thus suggests a continuum in mangrove functioning across scales and ecotypes and additionally provides viable proxies for carbon stock estimations in PES or REDD schemes.
Resumo:
In Lake Victoria and other tropical inland water bodies, the study of secondary production has lagged behind other aquatic studies mainly because of inadequate research funding. Lack of basic scientific knowledge of such a major ecosystem component has greatly limited the understanding and management capacity of a vital regional fishery resource. This paper reviews the major roles played by various invertebrate organisms in the functioning of aquatic systems and the contribution of secondary production studies to fishery production assessment and management.
Resumo:
This study was carried out in the interface zone of Lake Nabugabo, which is situated to the west of Lake Victoria. Four study sites were chosen from the south-western to the eastern ends of the euhydrophyte-dominated interface zone, which was about 10 km long, 10 to 50 m wide, 2 m deep and characterized by a thick layer of peat at the bottom. Nymphaea caerulea was the most dominant and widespread euhydrophyte species except in the eastern tip of the lake where it was replaced by Nymphaea lotus. Interspersed among these lilies was Ceratophyllum demersum in certain bays which were thought to be either water inlets or out-flows; Utricularia and Nymphoides indica were associated with monospecific stand of N. caerulea in the south- western end of the zone. The microinvertebrates were dominated by Copepoda (represented mainly by Cyclopoida), and Rotifera, with Cladocera occurring sporadically, while the macroinvertebrates were represented by Mollusca, Acarina, and seven insect orders of which Diptera (represented by Chironomidae) was the most dominant and widespread. Snails were found to have increased in abundance and distribution since the early 1960's. Nymphaea-Ceratophyllum mixed habitats had far more larval fishes and macroinvertebrates than monospecific stands of N. caerulea. Generally, the eastern end of the interface zone had more macroinvertebrates and larval fishes than the south-western end. Food habits of larval fishes were dominated by chironomid larvae; others consumed included detritus, aufwuchs and, periodically, cladocerans.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
2009
Does Landscape Context Affect Habitat Value? The Importance of Seascape Ecology in Back-reef Systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.