331 resultados para Malpighian tubule
Resumo:
Macrophage migration inhibitory factor (MIF), one of the first cytokines to be discovered, has recently been localized to the Leydig cells in adult rat testes. In the following study, the response of MIF to Leydig cell ablation by the Leydig cell-specific toxin ethane dimethane sulfonate (EDS) was examined in adult male rats. Testicular MIF mRNA and protein in testicular interstitial fluid measured by ELISA and western blot were only marginally reduced by EDS treatment, in spite of the fact that the Leydig cells were completely destroyed within 7 days. Immunohistochemistry using an affinity-purified anti-mouse MIF antibody localized MIF exclusively to the Leydig cells in control testes. At 7 days post-EDS treatment, there were no MIF immunopositive Leydig cells in the interstitium, although distinct MIF immunostaining was observed in the seminiferous tubules, principally in Sertoli cells and residual cytoplasm, and some spermatogonia. A few peritubular and perivascular cells were also labelled at this time, which possibly represented mesenchymal Leydig cell precursors. At 14 and 21 days, Sertoli cell MIF immunoreactivity was observed in only a few tubule cross-sections, while some peritubular and perivascular mesenchymal cells and the re-populating immature Leydig cells were intensely labeled. At 28 days after EDS-treatment, the MIF immunostaining pattern was identical to that of untreated and control testes. The switch in the compartmentalization of MIF protein at 7 days after EDS-treatment was confirmed by western blot analysis of interstitial tissue and seminiferous tubules separated by mechanical dissection. These data establish that Leydig cell-depleted testes continue to produce MIF, and suggest the existence of a mechanism of compensatory cytokine production involving the Sertoli cells. This represents the first demonstration of a hitherto unsuspected pattern of cellular interaction between the Leydig cells and the seminiferous tubules which is consistent with an essential role for MIF in male testicular function.
Resumo:
Purpose: A number of cytotoxic chemotherapy agents tested at low concentrations show antiangiogenic properties with limited cytotoxicity, e.g., cyclophosphamide, tirapazamine, and mitoxantrone. AQ4N is a bioreductive alkylaminoanthraquinone that is cytotoxic when reduced to AQ4; hence, it can be used to target hypoxic tumor cells. AQ4N is structurally similar to mitoxantrone and was evaluated for antiangiogenic properties without the need for bioreduction.
Experimental Design:The effect of AQ4N and fumagillin on human microvascular endothelial cells (HMEC-1) was measured using a variety ofin vitro assays, i.e., 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide, wound scrape, tubule formation, rat aortic ring, and invasion assays. Low-dose AQ4N (20 mg/kg) was also given in vivo to mice bearing a tumor in a dorsal skin flap.
Results:AQ4N (10-11to10-5mol/L) hadno effect on HMEC-1viability. AQ4N (10-9to10-5mol/L) caused a sigmoidal dose-dependent inhibition of endothelial cell migration in the wound scrape model. Fumagillin showed a similar response over a lower dose range (10-13 to 10-9 mol/L); however, the maximal inhibition was less (25% versus 43% for AQ4N). AQ4N inhibited HMEC-1 cell contacts on Matrigel (10-8 to 10-5 mol/L), HMEC-1 cell invasion, and sprouting in rat aorta explants. Immunofluorescence staining with tubulin, vimentim, dynein, and phalloidin revealed that AQ4N caused disruption to the cell cytoskeleton. When AQ4N (20 mg/kg) was given in vivo for 5 days, microvessels disappeared in LNCaP tumors grown in a dorsal skin flap.
Conclusions:This combination of assays has shown that AQ4N possesses antiangiogenic effects in normoxic conditions, which could potentially contribute to antitumor activity
Resumo:
Investigations of queen, worker and male bumble bees (Bombus terrestris) showed that all individuals became infected with Nosema bombi. Infections were found in Malpighian tubules, thorax muscles, fat body tissue and nerve tissue, including the brain. Ultrastructural studies revealed thin walled emptied spores in host cell cytoplasm interpreted as autoinfective spores, besides normal spores (environmental spores) intended for parasite transmission between hosts. The nucleotide sequence of the gene coding for the small subunit rRNA (SSU-rRNA) from Microsporidia isolated from B. terrestris, B. lucorum, and B. hortorum were identical, providing evidence that N. bombi infects multiple hosts. The sequence presented here (GenBank Accession no AY008373) is different from an earlier submission to GenBank (Accession no U26158) of a partial sequence of the same gene based on material collected from B. terrestris. It still remains to be investigated if there is species diversity among Microsporidia found in bumble bees.
Resumo:
Purpose: Antiangiogenic therapies can be an important adjunct to the management of many malignancies. Here we investigated a novel protein, FKBPL, and peptide derivative for their antiangiogenic activity and mechanism of action.
Experimental Design: Recombinant FKBPL (rFKBPL) and its peptide derivative were assessed in a range of human microvascular endothelial cell (HMEC-1) assays in vitro. Their ability to inhibit proliferation, migration, and Matrigel-dependent tubule formation was determined. They were further evaluated in an ex vivo rat model of neovascularization and in two in vivo mouse models of angiogenesis, that is, the sponge implantation and the intravital microscopy models. Antitumor efficacy was determined in two human tumor xenograft models grown in severe compromised immunodeficient (SCID) mice. Finally, the dependence of peptide on CD44 was determined using a CD44-targeted siRNA approach or in cell lines of differing CD44 status.
Results: rFKBPL inhibited endothelial cell migration, tubule formation, and microvessel formation in vitro and in vivo. The region responsible for FKBPL's antiangiogenic activity was identified, and a 24-amino acid peptide (AD-01) spanning this sequence was synthesized. It was potently antiangiogenic and inhibited growth in two human tumor xenograft models (DU145 and MDA-231) when administered systemically, either on its own or in combination with docetaxel. The antiangiogenic activity of FKBPL and AD-01 was dependent on the cell-surface receptor CD44, and signaling downstream of this receptor promoted an antimigratory phenotype.
Conclusion: FKBPL and its peptide derivative AD-01 have potent antiangiogenic activity. Thus, these agents offer the potential of an attractive new approach to antiangiogenic therapy.
Resumo:
Induced in high glucose-1 (IHG-1) is an evolutionarily conserved gene transcript upregulated by high extracellular glucose concentrations, but its function is unknown. Here, it is reported that the abundance of IHG-1 mRNA is nearly 10-fold higher in microdissected, tubule-rich renal biopsies from patients with diabetic nephropathy compared with control subjects. In the diabetic nephropathy specimens, in situ hybridization localized IHG-1 to tubular epithelial cells along with TGF-beta1 and activated Smad3, suggesting a possible role in the development of tubulointerstitial fibrosis. Supporting this possibility, IHG-1 mRNA and protein expression also increased with unilateral ureteral obstruction. In the HK-2 proximal tubule cell line, overexpression of IHG-1 increased TGF-beta1-stimulated expression of connective tissue growth factor and fibronectin. IHG-1 was found to amplify TGF-beta1-mediated transcriptional activity by increasing and prolonging phosphorylation of Smad3. Conversely, inhibition of endogenous IHG-1 with small interference RNA suppressed transcriptional responses to TGF-beta1. In summary, IHG-1, which increases in diabetic nephropathy, may enhance the actions of TGF-beta1 and contribute to the development of tubulointerstitial fibrosis.
Resumo:
Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P?=?1.2×10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P?=?2.0×10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-ß1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P?=?2.1×10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
Resumo:
Diabetic nephropathy (DN) is a progressive fibrotic condition that may lead to end-stage renal disease and kidney failure. Transforming growth factor-ß1 and bone morphogenetic protein-7 (BMP7) have been shown to induce DN-like changes in the kidney and protect the kidney from such changes, respectively. Recent data identified insulin action at the level of the nephron as a crucial factor in the development and progression of DN. Insulin requires a family of insulin receptor substrate (IRS) proteins for its physiological effects, and many reports have highlighted the role of insulin and IRS proteins in kidney physiology and disease. Here, we observed IRS2 expression predominantly in the developing and adult kidney epithelium in mouse and human. BMP7 treatment of human kidney proximal tubule epithelial cells (HK-2 cells) increases IRS2 transcription. In addition, BMP7 treatment of HK-2 cells induces an electrophoretic shift in IRS2 migration on SDS/PAGE, and increased association with phosphatidylinositol-3-kinase, probably due to increased tyrosine/serine phosphorylation. In a cohort of DN patients with a range of chronic kidney disease severity, IRS2 mRNA levels were elevated approximately ninefold, with the majority of IRS2 staining evident in the kidney tubules in DN patients. These data show that IRS2 is expressed in the kidney epithelium and may play a role in the downstream protective events triggered by BMP7 in the kidney. The specific up-regulation of IRS2 in the kidney tubules of DN patients also indicates a novel role for IRS2 as a marker and/or mediator of human DN progression.
Resumo:
Proteinuria originates from the kidney and occurs as a result of injury to either the glomerulus or the renal tubule or both. It is relatively common in the general population with reported point prevalence of up to 8% but the prevalence falls to around 2% on repeated testing. Chronic glomerular injury resulting in proteinuria may be secondary to prolonged duration of diabetes or hypertension. A tubular origin of proteinuria may be associated with inflammation of renal tubules triggered by prescribed drugs or ingested toxins. In the absence of obvious clues to the cause of persistent proteinuria on history or clinical examination it is worthwhile reviewing the patient's prescribed drugs to identify any potentially nephrotoxic agents e.g. NSAIDs. NICE guidelines recommend screening for proteinuria in individuals at higher risk for chronic kidney disease (CKD). These include patients with diabetes, hypertension, cardiovascular disease, connective tissue disorders, a family history of renal disease and those prescribed potentially nephrotoxic drugs. Patients with sudden onset of lower limb oedema and associated proteinuria should have a serum albumin level measured to exclude the nephrotic syndrome. Renal tract ultrasound will measure kidney size, and detect scarring associated with chronic pyelonephritis or prior renal stone disease which can cause proteinuria.
Resumo:
Gremlin (Grem1) is a member of the DAN family of secreted bone morphogenetic protein (BMP) antagonists. Bone morphogenetic protein-7 (BMP-7) mediates protective effects during renal fibrosis-associated with diabetes and other renal diseases. The pathogenic mechanism of Grem1 during DN has been suggested to be binding and inhibition of BMP-7. However, the precise interactions between Grem1, BMP-7 and other BMPs have not been accurately defined. Here we show the affinity of Grem1 for BMP-7 is lower than that of BMP-2 and BMP-4, using a combination of surface plasmon resonance and cell culture techniques. Using kidney proximal tubule cells and HEK-293 cell Smad1/5/8 phosphorylation and BMP-dependent gene expression as readout, Grem1 consistently demonstrated a higher affinity for BMP-2>4>7. Cell-associated Grem1 did not inhibit BMP-2 or BMP-4 mediated signalling, suggesting that Grem1-BMP-2 binding occurred in solution, preventing BMP receptor activation. These data suggest that Grem1 preferentially binds to BMP-2 and this may be the dominant complex in a disease situation where levels of Grem1 and BMPs are elevated.
Resumo:
Induced in high glucose-1 (IHG-1) is a conserved mitochondrial protein associated with diabetic nephropathy (DN) that amplifies profibrotic transforming growth factor (TGF)-β1 signaling and increases mitochondrial biogenesis. Here we report that inhibition of endogenous IHG-1 expression results in reduced mitochondrial respiratory capacity, ATP production, and mitochondrial fusion. Conversely, overexpression of IHG-1 leads to increased mitochondrial fusion and also protects cells from reactive oxygen species-induced apoptosis. IHG-1 forms complexes with known mediators of mitochondrial fusion-mitofusins (Mfns) 1 and 2-and enhances the GTP-binding capacity of Mfn2, suggesting that IHG-1 acts as a guanine nucleotide exchange factor. IHG-1 must be localized to mitochondria to interact with Mfn1 and Mfn2, and this interaction is necessary for increased IHG-1-mediated mitochondrial fusion. Together, these findings indicate that IHG-1 is a novel regulator of both mitochondrial dynamics and bioenergetic function and contributes to cell survival following oxidant stress. We propose that in diabetic kidney disease increased IHG-1 expression protects cell viability and enhances the actions of TGF-β, leading to renal proximal tubule dedifferentiation, an important event in the pathogenesis of this devastating condition.
Resumo:
Vesicle and tubule transport containers move proteins and lipids from one membrane system to another. Newly forming transport containers frequently have electron-dense coats. Coats coordinate the accumulation of cargo and sculpt the membrane. Recent advances have shown that components of both COP1 and clathrin-adaptor coats share the same structure and the same motif-based cargo recognition and accessory factor recruitment mechanisms, which leads to insights on conserved aspects of coat recruitment, polymerisation and membrane deformation. These themes point to the way in which evolutionarily conserved features underpin these diverse pathways.
Resumo:
Retinal angiogenesis is tightly regulated to meet oxygenation and nutritional requirements. In diseases such as proliferative diabetic retinopathy and neovascular age-related macular degeneration, uncontrolled angiogenesis can lead to blindness. Our goal is to better understand the molecular processes controlling retinal angiogenesis and discover novel drugs that inhibit retinal neovascularization. Phenotype-based chemical screens were performed using the ChemBridge DiversetTM library and inhibition of hyaloid vessel angiogenesis in Tg(fli1:EGFP) zebrafish. 2-[(E)-2-(Quinolin-2-yl)vinyl]phenol, (quininib) robustly inhibits developmental angiogenesis at 4–10 μM in zebrafish and significantly inhibits angiogenic tubule formation in HMEC-1 cells, angiogenic sprouting in aortic ring explants, and retinal revascularization in oxygen-induced retinopathy mice. Quininib is well tolerated in zebrafish, human cell lines, and murine eyes. Profiling screens of 153 angiogenic and inflammatory targets revealed that quininib does not directly target VEGF receptors but antagonizes cysteinyl leukotriene receptors 1 and 2 (CysLT1–2) at micromolar IC50 values. In summary, quininib is a novel anti-angiogenic small-molecule CysLT receptor antagonist. Quininib inhibits angiogenesis in a range of cell and tissue systems, revealing novel physiological roles for CysLT signaling. Quininib has potential as a novel therapeutic agent to treat ocular neovascular pathologies and may complement current anti-VEGF biological agents.
Resumo:
RESUMO: Arl13b é uma importante proteína ciliar, presente em cílios primários e cílios móveis. Ratinhos mutantes para Arl13b têm comprimento dos cílios reduzido e defeitos nos B-túbulos dos cílios. Como consequência destes fenótipos, deficiências na Arl13b originam, em modelos animais, várias doenças congénitas, incluindo problemas no estabelecimento do eixo esquerda-direita, malformações cerebrais e deformações corporais. Nos seres humanos, deficiências na Arl13b levam a uma doença crónica congénita chamada Síndrome de Joubert. Por outro lado, a sobreexpressão de Arl13b origina cílios mais longos, no entanto existe uma ausência da caracterização dos fenótipos celulares e durante o desenvolvimento embrionário. Neste trabalho, quisemos explorar o efeito da sobre-expressão de Arl13b em embriões de peixezebra. Descobrimos que, ao nível ciliar, a sobre-expressão de Arl13b nas células aumenta o comprimento ciliar em cílios primários e móveis, no entanto, a esses cílios falta adequada acetilação da alfa-tubulina no citoesqueleto feito por microtúbulos. Os nossos resultados mostraram que esse efeito é específico de Arl13b sobre-expressão e quando se manipularam as enzimas responsáveis pela acetilação (Mec17) e pela de-acetilação (HDAC6) encontrámos uma sinergia potencial com ambas. Testámos ainda, que o aumento no comprimento ciliar não estava causalmente relacionado com a falta de acetilação, ou seja, os cílios com menos acetilação não eram necessariamente os mais longos. Também mostrámos que a sobre-expressão de Arl13b é capaz de restaurar o comprimento dos cílios em mutantes com cílios curtos e como isso pode ser explorado para um futuro potencial papel terapêutico para Arl13b. Em seguida, foi avaliado o impacto do aumento da quantidade de Arl13b no desenvolvimento embrionário do peixe-zebra. Observou-se que a sobre-expressão de Arl13b apresentava fenótipos muito fracos, quando comparados com a perda de função dos mutantes de Arl13b. Focados no inesperado fenótipo leve no estabelecimento do eixo esquerda-direita abordámos a questão através do estabelecimento de uma colaboração com matemáticos, descobrimos que os cílios mais longos que potencialmente têm a capacidade de movimentar mais fluido são atenuados por amplitudes de batimento menores, e, como resultado, estes longos cílios não prejudicam o movimento do fluido e consequentemente não afetam o estabelecimento dos padrões de esquerda-direita. Sugerimos assim que a Arl13b é um regulador chave, do comprimento ciliar. Descobrimos uma nova interação com as enzimas de acetilação/de-acetilação e levantamos novas hipóteses quanto aos mecanismos moleculares da função da Arl13b. Propomos um novo modelo para o mecanismo molecular da Arl13b na regulação do comprimento dos cílios onde podemos integrar os nossos resultados com os relatados na literatura. Este trabalho adiciona mais conhecimento para o mecanismo de ação da Arl13b e, portanto, fornece uma importante contribuição para o campo da investigação em cílios.---------------------------------------------------------------------------------------------------------------------- ABSTRACT: Arl13b is an important ciliary protein, present in primary and motile cilia. arl13b-/- mouse mutants have reduced cilia length and cilia B-tubule defects. As a consequence of these phenotypes, Arl13b loss of function animal models suffer from several congenital disorders including left-right problems, brain malformations and body deformations. In humans Arl13b depletion leads to a congenital chronic disease called Joubert Syndrome. On the other hand, overexpressing Arl13b leads to longer cilia but the characterization of the cellular and developmental phenotypes was missing. In this work we explore the effect of Arl13b overexpression in zebrafish embryos. We found that, at the ciliary level, Arl13b overexpression from 1 cell stage produces longer primary and motile cilia, but these cilia lack proper alpha tubulin acetylation of their microtubule cytoskeleton. Our results showed that this effect is specific from Arl13b overexpression and when we manipulated the enzymes responsible for acetylation, Mec17, and de-acetylation, HDAC6, we found a potential synergy of both mec17 knockdown and HDAC6 activity with Arl13b overexpression. We tested that the ciliary increase in length was not causally related to the lack of acetylation, meaning the more de-acetylated cilia were not necessarily the longer ones. We also showed that Arl13b overexpression is able to restore cilia length in short cilia mutants and how that may be explored to a potential future therapeutic role for Arl13b. Next, we evaluated the impact of increasing the amount of Arl13b in zebrafish embryonic development. We observed that Arl13b overexpression presented very mild phenotypes when compared to the loss of function mutants. We focused on the unexpected left-right mild phenotype and by establishing a mathematical modeling collaboration, we found out that the longer cilia generated force was attenuated by smaller beating amplitudes, and as a result, these long cilia were not impairing the cilia generated flow and the establishment of left-right patterning. We suggest that Arl13b is one key cilia length regulator. We disclosed a novel interaction with the acetylation / de-acetylation enzymes and raised new hypothesis as to the mechanisms of Arl13b function. We propose a new model for the Arl13b molecular mechanism of cilia length regulation where we integrate our findings with those reported in the literature. This work adds more knowledge to the Arl13b mechanism of action and therefore provides an important contribution to the cilia research field.
Resumo:
A 56-year-old man presented with a "nail" growing at the base of his glans penis. The tumor was locally excised, and microscopic examination revealed papillomatosis and hyperkeratosis of the malpighian epithelium, with a strong inflammatory reaction of the chorion and signs of local microinvasion, as well as the presence of well-differentiated squamous epithelial cells. The surgical margins were negative. The differential diagnosis was made between a benign papillomatous proliferation and verrucous carcinoma.
Resumo:
Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.