963 resultados para Malicious Node Detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) monitor a net- work with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS’s rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network intrusion detection systems are themselves becoming targets of attackers. Alert flood attacks may be used to conceal malicious activity by hiding it among a deluge of false alerts sent by the attacker. Although these types of attacks are very hard to stop completely, our aim is to present techniques that improve alert throughput and capacity to such an extent that the resources required to successfully mount the attack become prohibitive. The key idea presented is to combine a token bucket filter with a realtime correlation algorithm. The proposed algorithm throttles alert output from the IDS when an attack is detected. The attack graph used in the correlation algorithm is used to make sure that alerts crucial to forming strategies are not discarded by throttling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensuring the security of computers is a non-trivial task, with many techniques used by malicious users to compromise these systems. In recent years a new threat has emerged in the form of networks of hijacked zombie machines used to perform complex distributed attacks such as denial of service and to obtain sensitive data such as password information. These zombie machines are said to be infected with a dasiahotpsila - a malicious piece of software which is installed on a host machine and is controlled by a remote attacker, termed the dasiabotmaster of a botnetpsila. In this work, we use the biologically inspired dendritic cell algorithm (DCA) to detect the existence of a single hot on a compromised host machine. The DCA is an immune-inspired algorithm based on an abstract model of the behaviour of the dendritic cells of the human body. The basis of anomaly detection performed by the DCA is facilitated using the correlation of behavioural attributes such as keylogging and packet flooding behaviour. The results of the application of the DCA to the detection of a single hot show that the algorithm is a successful technique for the detection of such malicious software without responding to normally running programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malicious users try to compromise systems using new techniques. One of the recent techniques used by the attacker is to perform complex distributed attacks such as denial of service and to obtain sensitive data such as password information. These compromised machines are said to be infected with malicious software termed a “bot”. In this paper, we investigate the correlation of behavioural attributes such as keylogging and packet flooding behaviour to detect the existence of a single bot on a compromised machine by applying (1) Spearman’s rank correlation (SRC) algorithm and (2) the Dendritic Cell Algorithm (DCA). We also compare the output results generated from these two methods to the detection of a single bot. The results show that the DCA has a better performance in detecting malicious activities.

Relevância:

20.00% 20.00%

Publicador: