988 resultados para Male animals
Resumo:
Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.
Resumo:
Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.
Resumo:
Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.
Resumo:
The ability of a population to adapt to changing environments depends critically on the amount and kind of genetic variability it possesses. Mutations are an important source of new genetic variability and may lead to new adaptations, especially if the population size is large. Mutation rates are extremely variable between and within species, and males usually have higher mutation rates as a result of elevated rates of male germ cell division. This male bias affects the overall mutation rate. We examined the factors that influence male mutation bias, and focused on the effects of classical life-history parameters, such as the average age at reproduction and elevated rates of sperm production in response to sexual selection and sperm competition. We argue that human-induced changes in age at reproduction or in sexual selection will affect male mutation biases and hence overall mutation rates. Depending on the effective population size, these changes are likely to influence the long-term persistence of a population.
Resumo:
Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.
Resumo:
Previous investigations in experimental animals have shown that a new type of beta-adrenoceptor agonist (Ro 16-8714) possesses both thermogenic and antihyperglycemic properties. The aim of the study was to assess the thermogenic capacity of the compound in man after acute administration. Following an overnight fast three different doses (5, 10 and 20 mg) and a placebo were given per os to six normal-weight young men. The rate of energy expenditure (EE) and substrate utilization were determined by indirect calorimetry (hood system) before and for 6 h following the drug administration. Heart rate and blood pressure as well as plasma glucose, insulin and free fatty acid (FFA) concentrations were also measured at regular intervals throughout the study. The increment relative to base-line (mean +/- s.e.m.) in EE with placebo, 5, 10 and 20 mg was 4 +/- 3, 10 +/- 2, 11 +/- 2 and 21 +/- 2 percent respectively whereas heart rate was enhanced by 2 +/- 2, 8 +/- 3, 22 +/- 2, and 49 +/- 8 percent. Systolic blood pressure increased less (1 +/- 2, 8 +/- 1, 11 +/- 1 and 13 +/- 2 percent), and diastolic blood pressure did not change significantly. Simultaneously we observed a slight and transient increase in blood glucose, insulin and FFA concentrations. It is concluded that in lean individuals Ro 16-8714 is a potent thermogenic agent; however, new beta-adrenoceptor agonists should be developed in order to avoid the tachycardia associated with the thermogenic effect.
Resumo:
Odours of vertebrates often contain information about the major histocompatibility complex (MHC), and are used in kin recognition, mate choice or female investment in pregnancy. It is, however, still unclear whether MHC-linked signals can also affect male reproductive strategies. We used horses (Equus caballus) to study this question under experimental conditions. Twelve stallions were individually exposed either to an unfamiliar MHC-similar mare and then to an unfamiliar MHC-dissimilar mare, or vice versa. Each exposure lasted over a period of four weeks. Peripheral blood testosterone levels were determined weekly. Three ejaculates each were collected in the week after exposure to both mares (i.e. in the ninth week) to determine mean sperm number and sperm velocity. We found high testosterone levels when stallions were kept close to MHC-dissimilar mares and significantly lower ones when kept close to MHC-similar mares. Mean sperm number per ejaculate (but not sperm velocity) was positively correlated to mean testosterone levels and also affected by the order of presentation of mares: sperm numbers were higher if MHC-dissimilar mares were presented last than if MHC-similar mares were presented last. We conclude that MHC-linked signals influence testosterone secretion and semen characteristics, two indicators of male reproductive strategies.
Resumo:
The adult sex ratio (ASR) is a key parameter of the demography of human and other animal populations, yet the causes of variation in ASR, how individuals respond to this variation, and how their response feeds back into population dynamics remain poorly understood. A prevalent hypothesis is that ASR is regulated by intrasexual competition, which would cause more mortality or emigration in the sex of increasing frequency. Our experimental manipulation of populations of the common lizard (Lacerta vivipara) shows the opposite effect. Male mortality and emigration are not higher under male-biased ASR. Rather, an excess of adult males begets aggression toward adult females, whose survival and fecundity drop, along with their emigration rate. The ensuing prediction that adult male skew should be amplified and total population size should decline is supported by long-term data. Numerical projections show that this amplifying effect causes a major risk of population extinction. In general, such an "evolutionary trap" toward extinction threatens populations in which there is a substantial mating cost for females, and environmental changes or management practices skew the ASR toward males.
Resumo:
Both intra- and inter-sexual selection may crucially determine a male's fitness. Their interplay, which has rarely been experimentally investigated, determines a male's optimal reproductive strategy and thus is of fundamental importance to the understanding of a male's behaviour. Here we investigated the relative importance of intra- and inter-sexual selection for male fitness in the common lizard. We investigated which male traits predict a male's access to reproduction allowing for both selective pressures and comparing it with a staged mating experiment excluding all types of intra-sexual selection. We found that qualitatively better males were more likely to reproduce and that sexual selection was two times stronger when allowing for both selective pressures, suggesting that inter- and intra-sexual selection determines male fitness and confirming the existence of multi-factorial sexual selection. Consequently, to optimize fitness, males should trade their investment between the traits, which are important for inter- and intra-sexual selection.
Lifetime and intergenerational fitness consequences of harmful male interactions for female lizards.
Resumo:
Male mating behaviors harmful to females have been described in a wide range of species. However, the direct and indirect fitness consequences of harmful male behaviors have been rarely quantified for females and their offspring, especially for long-lived organisms under natural conditions. Here, lifetime and intergenerational consequences of harmful male interactions were investigated in female common lizards (Lacerta vivipara) using field experiments. We exposed females to male harm by changing the population sex ratio from a normal female-biased to an experimental male-biased sex ratio during the first experimental year. Thereafter, females and their first generation of offspring were monitored during two additional years in a common garden with a female-biased sex ratio. We found strong immediate fitness costs and lower lifetime reproductive success in females subjected to increased male exposure. The immediate fitness costs were partly mitigated by direct compensatory responses after exposure to male excess, but not by indirect benefits through offspring growth, offspring survival, or mating success of offspring. These results support recent empirical findings showing that the direct costs of mating are not outweighed by indirect benefits.
Resumo:
Corticosterone is an important hormone of the stress response that regulates physiological processes and modifies animal behavior. While it positively acts on locomotor activity, it may negatively affect reproduction and social activity. This suggests that corticosterone may promote behaviors that increase survival at the cost of reproduction. In this study, we experimentally investigate the link between corticosterone levels and survival in adult common lizards (Lacerta vivipara) by comparing corticosterone-treated with placebo-treated lizards. We experimentally show that corticosterone enhances energy expenditure, daily activity, food intake, and it modifies the behavioral time budget. Enhanced appetite of corticosterone-treated individuals compensated for increased energy expenditure and corticosterone-treated males showed increased survival. This suggests that corticosterone may promote behaviors that reduce stress and it shows that corticosterone per se does not reduce but directly or indirectly increases longer-term survival. This suggests that the production of corticosterone as a response to a stressor may be an adaptive mechanism that even controls survival.
Resumo:
Many of the reproductive disorders that emerge in adulthood have their origin during fetal development. Numerous studies have demonstrated that exposure to endocrine disrupting chemicals can permanently affect the reproductive health of experimental animals. In mammals, male sexual differentiation and development are androgen-dependent processes. In rat, the critical programming window for masculinization occurs between embryonic days (EDs) 15.5 and 19.5. Disorders in sex steroid balance during fetal life can disturb the development of the male reproductive tract. In addition to the fetal testis, the adrenal cortex starts to produce steroid hormones before birth. Glucocorticoids produced by the adrenal cortex are essential for preparing the fetus for birth. In the present study, the effects of exposure to endocrine disrupters on fetal male rat testicular and adrenal development were investigated. To differentiate the systemic and direct testicular effects of endocrine disrupters, both in vivo and in vitro experiments were performed. The present study also clarified the role of desert hedgehog signalling (Dhh) in the development of the testis. The results indicate that endocrine disrupters, diethylstilbestrol (DES) and flutamide, are able to induce rapid steroidogenic changes in fetal rat testis under in vitro conditions. Although in utero exposure to these chemicals did not show overt effects in fetal testis, they can induce permanent changes in the developing testis and accessory sex organs later in life. We also reported that exposure to antiandrogens can interfere with testicular Dhh signalling and result in impaired differentiation of the fetal Leydig cells and subsequently lead to abnormal testicular development and sexual differentiation. In utero exposure to tetrachlorodibenzo-p-dioxin (TCDD) caused direct testicular and pituitary effects on the fetal male rat but with different dose responses. In a study in which the effects of developmental exposure to environmental antiandrogens, di-isononylphthalate and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p’-DDE), on fetal male rat steroidogenesis were investigated, chemicals did not down-regulate testicular or adrenal steroid hormone synthesis or production in 19.5-day-old fetal rats. However, p,p’-DDE-treatment caused clear histological and ultrastructural changes in the prenatal testis and adrenal gland. These structural alterations can disturb the development and function of fetal testis and adrenal gland that may become evident later in life. Exposure to endocrine disrupters during fetal life can cause morphological abnormalities and alter steroid hormone production by fetal rat Leydig cells and adrenocortical cells. These changes may contribute to the maldevelopment of the testis and the adrenal gland. The present study highlights the importance of the fetal period as a sensitive window for endocrine disruption.
Resumo:
Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids.We analyzed whether reduced urea excretion was a consequence of higherNO ; (nitrite,nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion.There were no differences in plasma nitrate or nitrite. NO and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithinewhen comparedwith controls,whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.
Resumo:
The morphology of the accessory genital glands of the male agouti was studied in twenty-three animals that were raised in captivity. Twenty animals had their genital glands dissected in situ for macroscopic description. The samples of each gland were recovered, embedded in paraffin, sliced and stained by Hematoxylin-Eosin technique. It was founded four pairs of glands: the vesicular glands, the coagulating glands, the prostate and the bulbourethral glands. Histological characteristics of the vesicular, coagulating and prostate glands showed similar morphology, within the pseudostratified columnar epithelium. The tubulo-alveolar type of the bulbourethral glands showed a lack of connective tissue among the tubules, a small amount of red stained presented it the cytoplasm, and the presence of vacuoles in the tissue. This study concluded that the agouti showed to have similar morphological aspect described in the others species of rodents.
Resumo:
Immunohistochemistry was used to evaluate the effects of neonatal handling and aversive stimulation during the first 10 days of life on the number of corticotrophs in the anterior lobe of the pituitary of 11-day-old male Wistar rats. Since adult rats handled during infancy respond with reduced corticosterone secretion in response to stressors and with less behavior inhibition in novel environments, we assumed that neonatal stimulation could affect pituitary morphology during this critical period of cell differentiation. Three groups of animals were studied: intact (no manipulation, N = 5), handled (N = 5) and stimulated (submitted to 3 different aversive stimuli, N = 5). The percentage of ACTH-immunoreactive cells in the anterior lobe of the pituitary (number of ACTH-stained cells divided by total number of cells) was determined by examining three slices per pituitary in which a minimum of 200 cells were counted by two independent researchers. Although animals during the neonatal period are less reactive to stress-like stimulation in terms of ACTH and corticosterone secretion, results showed that the relative number of ACTH-stained cells of neonatal handled (0.25 ± 0.01) and aversive stimulated (0.29 ± 0.03) rats was not significantly different from intact (0.30 ± 0.03) animals. Neonatal stimulation may have a differential effect on the various subpopulations of corticotroph cells in the anterior pituitary