1000 resultados para Magnetic tablets
Resumo:
Effects of titanium carbide (TiC) addition on structural and magnetic properties of isotropic (Pr,Nd)-Fe-B nanocrystalline magnetic materials have been investigated. In this work, we investigate the effect of TiC addition on a (Pr,Nd)-poor and B-rich composition, as well as on a B-poor and (Nd, Pr)-rich composition. Rapidly solidified (Pr, Nd)-Fe-B alloys were prepared by melt-spinning. The compositions studied were (Pr(1-x)Nd(x))(4)Fe(78)B(18) (x = 0, 0.5, and 1) with addition of 3 at% TiC. Unlike the (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) materials that present excellent values for coercive. field and energy product, the (Pr,Nd)-poor and B-rich composition alloys with TiC addition present lower values. Rietveld analysis of X-ray data and Mossbauer spectroscopy revealed that samples are predominantly composed of Fe(3)B and alpha-Fe. For the RE-rich compositions (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) (x = 0.1, 0.25, 0.5, 0.75, and 1) with the addition of 3 at% TiC, the highest coercive field and energy product (8.4 kOe and 14.4 MGOe, respectively) were obtained for the composition Pr(9.5)Fe(84.5)B(6). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of Sao Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD.
Resumo:
This work presents results of preliminary studies concerning application of magnetic bearing in a ventricular assist device (VAD) being developed by Dante Pazzanese Institute of Cardiology-IDPC (Sao Paulo, Brazil). The VAD-IDPC has a novel architecture that distinguishes from other known VADs. In this, the rotor has a conical geometry with spiral impellers, showing characteristics that are intermediate between a centrifugal VAD and an axial VAD. The effectiveness of this new type of blood pumping principle was showed by tests and by using it in heart surgery for external blood circulation. However, the developed VAD uses a combination of ball bearings and mechanical seals, limiting the life for some 10 h, making impossible its long-term use or its use as an implantable VAD. As a part of development of an implantable VAD, this work aims at the replacement of ball bearings by a magnetic bearing. The most important magnetic bearing principles are studied and the magnetic bearing developed by Escola Politecnica of Sao Paulo University (EPUSP-MB) is elected because of its very simple architecture. Besides presenting the principle of the EPUSP-MB, this work presents one possible alternative for applying the EPUSP-MB in the IDPC-VAD.
Resumo:
New fast liquid chromatographic and capillary zone electrophoresis methods were developed and validated for simultaneous determination of atenolol and chlortalidone in combined dose tablets. The reversed phase HPLC method was carried out on a CN LiChrosorb (R) (125 x 4 mm, 5 mu m) column. The CZE method was carried out on an uncoated fused-silica capillary of 30 cm x 75 mu m i.d. with 25 mmol L(-1) sodium tetraborate, pH 9.4. The total analysis time was <6 and <2.5 min for HPLC and CZE methods, respectively. Both methods can be used for stability studies as well.
Resumo:
A nuclear magnetic resonance (NMR) spectroscopic method was validated for the quantitative determination of dimethylaminoethanol (DMAE) in cosmetic formulations. The linearity in the range from 0.5000 to 1.5000 g (DMAE salt/mass maleic acid) presents a correlation coefficient > 0.99 for all DMAE salts. The repeatability (intraday), expressed as relative standard deviation, ranged from 1.08 to 1.44% for samples and 1.31 to 1.88% for raw materials. The detection limit and quantitation limit were 0.0017 and 0.0051 g for DMAE, 0.0018 and 0.0054 g for DMAE bitartrate, and 0.0023 and 0.0071 g for DMAE acetamidobenzoate, respectively. The proposed method is simple, precise, and accurate and can be used in the quality control of raw materials and cosmetic gels containing these compounds as active substances.
Resumo:
The purpose of this paper was to produce controlled-release matrices with 120 mg of propranolol hydrochloride (PHCl) employing hydroxypropyl methylcellulose (HPMC, Methocel (R) K100) as the gel forming barrier. Although this class of polymers has been commonly used for direct compression, with the intent of use reduced polymer concentrations to achieve controlled drug release, in this study tablets were produced by the wet granulation process. HPMC percentages ranged from 15-34 % and both soluble and non soluble diluents were tested in the 10 proposed tablet compositions. Dissolution testing of matrices was performed over a 12 h period in 1.2 pH medium (the first 2 h) and in pH 6.8 (10 h). Dissolution kinetic analysis was performed by applying Zero-order, First-order and Higuchi models with the aim of elucidating the drug release mechanism. All physical-chemical characteristics such as average weight, friability, hardness, diameter, height, and drug content were in accordance to the pharmacopeial specifications. Taking into account that PHCl is a very soluble drug, low concentrations (15 %) of HPMC were sufficient to reduce the drug release and to promote controlled release of PHCl, presenting good dissolution efficiencies, between 50 % and 63 %. The Higuchi model has presented the best fit to the 15 % HPMC formulations, indicating that the main release mechanism was diffusion. It could be concluded that the application of the wet granulation method reduced matrices erosion and promoted controlled release of the drug at low HPMC percentages.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
The aim of the present study was to provide a numerical measure, through the process capability indexes (PCIs), C(p) and C(pk), on whether or not the manufacturing process can be considered capable of producing metamizol (500 mg) tablets. They were also used as statistical tool in order to prove the consistency of the tabletting process, making sure that the tablet weight and the content uniformity of metamizol are able to comply with the preset requirements. Besides that, the ANOVA, the t-test and the test for equal variances were applied to this study, allowing additional knowledge of the tabletting phase. Therefore, the proposed statistical approach intended to assure more safety, precision and accuracy on the process validation analysis.
Resumo:
New rapid first-derivative spectrophotometric (UVDS) and a stability-indicating high performance liquid chromatographic (HPLC) methods were developed, validated and successfully applied in the analysis of loratadine (LT) in tablets and syrups. In the UVDS method, 0.1 M HCl was used as solvent. The measurements were made at 312.4 nm in the first order derivative spectra. The HPLC method was carried out on a RP-18 column with a mobile phase composed of methanol-water-tetrahydrofuran (50:30:20, v/v/v). UV detection was made at 247 nm. For HPLC methods the total analysis time was <3min, adequate for routine quality control of tablets and syrups containing loratadine.
Resumo:
A stability-indicating high-performance liquid chromatographic (HPLC) and a second-order derivative spectrophotometric (UVDS) analytical methods were validated and compared for determination of simvastatin in tablets. The HPLC method was performed with isocratic elution using a C18 column and a mobile phase composed of methanol:acetonitrile:water (60:20:20, v/v/v) at a flow rate of 1.0 ml/min. The detection was made at 239 nm. In UVDS method, methanol and water were used in first dilution and distilled water was used in consecutive dilutions and as background. The second-order derivative signal measurement was taken at 255 nm. Analytical curves showed correlation coefficients > 0.999 for both methods. The quantitation limits (QL) were 2.41 mu g/ml for HPLC and 0.45 mu g/ml for UVDS, respectively. Intra and inter-day relative standard deviations were < 2.0 %. Statistical analysis with t- and F-tests are not exceeding their critical values demonstrating that there is no significant difference between the two methods at 95 % confidence level.
Resumo:
High performance liquid chromatographic (HPLC) and UV derivative spectrophotometric (UVDS) methods were developed and validated for the quantitative determination of sotalol hydrochloride in tablets. The HPLC method was performed on a C18 column with fluorescence detection. The excitation and emission wavelengths were 235 and 310nm, respectively. The mobile phase was composed of acetonitrile-water containing 0.1% trietylamine (7:93v/v) and pH adjusted to 4.6 with formic acid. The UVDS method was performed taking a signal at 239.1nm in the first derivative. The correlation coefficients (r) obtained were 0.9998 and 0.9997 for HPLC and UVDS methods, respectively. The proposed methods are simple and adaptable to routine analysis.
Resumo:
The purpose of this study was to develop and validate analytical methods for determination of amlodipine besylate in tablets. Simple, accurate and precise liquid chromatographic and spectrophotometric methods are proposed. For the chromatographic method, the conditions were: a LiChrospher (R) 100 RP-18 Merck (R) (125 mm x 4.6 mm, 5 mu m) column; methanol/water containing 1 % of trietylamine adjusted to pH 5.0 with phosphoric acid (35:65) as mobile phase; a flow rate of 1.0 mL/min and UV detector at 238 nm. Linearity was in the range of 50.0 - 350.0 mu g/mL with a correlation coefficient (r) = 0.9999. For the spectrophotometric method, the first dilutions of samples were performed in methanol and the consecutives in ultrapure water. The quantitation was made at 364.4 nm. Linearity was determined within the range of 41.0 - 61.0 mu g/mL with a correlation coefficient (r) = 0.9996. Our results demonstrate that both methods can be used in routine analysis for quality control of tablets containing amlodipine besylate.
Resumo:
In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study reports on the preparation, characterization and in vitro toxicity test of a new nano-drug delivery system (NDDS) based on bovine serum albumin (BSA) nanospheres which incorporates surface-functionalized magnetic nanoparticles (MNP) and/or the silicon(IV) phthalocyanine (NzPc). The new NDDS was engineered for use in photodynamic therapy (PDT) combined with hyperthermia (HPT) to address cancer treatment. The BSA-based nanospheres, hosting NzPc, MNP or both (NzPc and MNP), present spherical shape with hydrodynamic average diameter values ranging from 170 to 450 nm and zeta potential of around -23 mV. No difference on the fluorescence spectrum of the encapsulated NzPc was found regardless of the presence of MNP. Time-dependent fluorescence measurements of the encapsulated NzPc revealed a bi-exponential decay for samples incorporating only NzPc and NzPc plus MNP, in the time window ranging from 1.70 to 5.20 ns. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic NDDS. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with two exchange constants J1 and J2 on a lattice that interpolates between the limits of a square lattice (J1=0), a triangular lattice (J2=J1), and decoupled linear chains (J2=0). In all cases, the susceptibility, which has a Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperature Tp. Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature dependence. We compare our results to the inorganic materials Cs2CuCl4 and Cs2CuBr4 and to a number of organic molecular crystals. We find that the former (Cs2CuCl4 and Cs2CuBr4) are weakly frustrated and their exchange parameters determined through the temperature dependence of the susceptibility are in agreement with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with exchange parameters near the isotropic triangular-lattice limit.