924 resultados para Magnetic nano-particles


Relevância:

80.00% 80.00%

Publicador:

Resumo:

介电泳方法被广泛地应用于微纳颗粒的分离和操纵中,实现介电泳操作的关键是设计满足所需电场分布的电极阵列。针对目前在微电极阵列设计中尚缺乏简单有效的电场解析方法的现状,提出一种基于格林公式的电极阵列电场的解析方法。首先介绍了传统介电泳和行波介电泳的概念和计算模型,分析了介电泳过程与电极上所施加的交变电压的频率和幅度的关系,然后在确立电极电势的边界条件的基础上,采用基于格林公式的电场解析方法,建立了非均匀电场的解析模型,得出不同条件下的电极阵列电场分布的仿真结果,最后利用FEMLAB有限元仿真软件对解析模型进行了对比仿真,验证了该解析模型的可行性。基于格林公式的电场解析求解方法能够有效地提高电极阵列设计中的针对性以及缩短电极设计的时间。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

随着微/纳米器件及传感器制造的发展,需要一种对大量粒子进行有效操纵的方法,在此背景下,本文介绍了利用行波介电泳方法对大量微粒进行定位和传输操纵的实现方法,分析了利用行波电泳进行微粒操纵所需要的条件,介绍了实现行波介电泳微粒操控的实验系统及实验操作过程,并在该实验系统下实现了对聚苯乙烯小球悬浮及水平传输操纵实验。该系统方法和实现技术为液体环境下微/纳粒子的装配和分离提供了一种可行技术。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

针对目前在纳米器件及传感器的制造中尚无对大量粒子进行有效操纵的方法,我们利用介电泳方法对大量微粒进行定位和传输操纵,介绍了利用MEMS工艺进行介电泳芯片加工的过程以及整个观测与实验系统的建立,通过有限元软件对传统介电泳和行波介电泳中电极阵列的电场分布进行求解,并在该实验系统下实现了对微通道中的悬浮高度和微粒的运动速度的测量.该实验系统的研究为液体环境下微纳颗粒的装配和分离提供了一条有效的技术路径.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesoporous spinel membranes as ultrafiltration membranes were prepared through a novel sol-gel technique. By in situ modification of the sol particle surface during the sol-gel process, control of the material structure on a nanometer scale from the earliest stages of processing was realized. Nano-particles with a chocolate-nut-like morphology, i.e. spinel MgAl2O4 as a shell and gamma -Al2O3 as a core, were first revealed by HRTEM results. The formation of the spinel phase was confirmed by X-ray diffraction (XRD). N-2 adsorption-desorption results showed that the mesoporous membranes had a narrow pore size distribution. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concept of pellicular particles was suggested by Horváth and Lipsky over fifty years ago. The reasoning behind the idea of these particles was to improve column efficiency by shortening the pathways analyte molecules can travel, therefore reducing the effect of the A and C terms. Several types of shell particles were successfully marketed around this time, however with the introduction of high quality fully porous silica under 10 μm, shell particles faded into the background. In recent years a new generation of core shell particles have become popular within the separation science community. These particles allow fast and efficient separations that can be carried out on conventional HPLC systems. Chapter 1 of this thesis introduces the chemistry of chromatographic stationary phases, with an emphasis on silica bonded phases, particularly focusing on the current state of technology in this area. The main focus is on superficially porous silica particles as a support material for liquid chromatography. A summary of the history and development of these particles over the past few decades is explored, along with current methods of synthesis of shell particles. While commercial shell particles have a rough outer surface, Chapter 2 focuses on the novel approach to growth of smooth surface superficially porous particles in a step-by-step manner. From the Stöber methodology to the seeded growth technique, and finally to the layer-bylayer growth of the porous shell. The superficially porous particles generated in this work have an overall diameter of 2.6 μm with a 350 nm porous shell; these silica particles were characterised using SEM, TEM and BET analysis. The uniform spherical nature of the particles along with their surface area, pore size and particle size distribution are examined in this chapter. I discovered that these smooth surface shell particles can be synthesised to give comparable surface area and pore size in comparison to commercial brands. Chapter 3 deals with the bonding of the particles prepared in Chapter 2 with C18 functionality; one with a narrow and one with a wide particle size distribution. This chapter examines the chromatographic and kinetic performance of these silica stationary phases, and compares them to a commercial superficially porous silica phase with a rough outer surface. I found that the particle size distribution does not seem to be the major contributor to the improvement in efficiency. The surface morphology of the particles appears to play an important role in the packing process of these particles and influences the Van Deemter effects. Chapter 4 focuses on the functionalisation of 2.6 μm smooth surface superficially porous particles with a variety of fluorinated and phenyl silanes. The same processes were carried out on 3.0 μm fully porous silica particles to provide a comparison. All phases were accessed using elemental analysis, thermogravimetric analysis, nitrogen sorption analysis and chromatographically evaluated using the Neue test. I observed comparable results for the 2.6 μm shell pentaflurophenyl propyl silica when compared to 3.0 μm fully porous silica. Chapter 5 moves towards nano-particles, with the synthesis of sub-1 μm superficially porous particles, their characterisation and use in chromatography. The particles prepared are 750 nm in total with a 100 nm shell. All reactions and testing carried out on these 750 nm core shell particles are also carried out on 1.5 μm fully porous particles in order to give a comparative result. The 750 nm core shell particles can be synthesised quickly and are very uniform. The main drawback in their use for HPLC is the system itself due to the backpressure experienced using sub – 1 μm particles. The synthesis of modified Stöber particles is also examined in this chapter with a range of non-porous silica and shell silica from 70 nm – 750 nm being tested for use on a Langmuir – Blodgett system. These smooth surface shell particles have only been in existence since 2009. The results displayed in this thesis demonstrate how much potential smooth surface shell particles have provided more in-depth optimisation is carried out. The results on packing studies reported in this thesis aims to be a starting point for a more sophisticated methodology, which in turn can lead to greater chromatographic improvements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Micro-and nanoparticles prepared front the biodegradable and biocompatible polymers poly(lactide-co-glycolide) (PLGA) and polymetylmethacrylate (PMMA) have been successfully used as immunopotentiating antigen delivery systems. In our study, this approach was used to improve polyclonal antibody production to clenbuterol (CBL), a model hapten. PLGA and PMMA nanoparticles were loaded with either CBL alone or with a clenbuterol-transferrin conjugate (CBL-Tfn) and administered subcutaneously to mice. PLGA nano-particles were administered with or without the saponin adjuvant Quil A. The anti-CBL titres present in experimental sera were determined by an enzyme immunoassay (ELISA). CBL-Tfn-loaded PLGA nanoparticles co-administered with Quil A had obvious advantages immmunologically over the currently used method of raising antibodies to CBL (the positive control). The combined adjuvanticity of Quil A and PLGA nanoparticles resulted in a positive response in all four of the mice tested and in higher antibody titles than were seen in the positive control group. Furthermore, the sustained release of immunogen from the nanoparticles permitted a reduction in immunizing frequency over the 15-week study period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(EN)Disclosed are a WC/CNT, WC/CNT/Pt composite material and a preparation process therefor and use thereof. The WC/CNT/Pt composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, carbon nanotubes and platinum nano particles, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward, and the platinum nano particles growing on the surfaces of the mesoporous spherical tungsten carbide and carbon nanotubes. The WC/CNT composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, and carbon nanotubes, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward. The WC/CNT/Pt composite material of the present invention can be used as an electro-catalyst in a methanol flue battery, significantly improving the catalytic conversion rate and the service life of the catalyst. The WC/CNT composite material can be used as an electro-catalyst in the electro-reduction of a nitro aromatic compound, significantly improving the efficiency of organic electro-synthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disclosed are a WC/CNT, WC/CNT/Pt composite material and a preparation process therefor and use thereof. The WC/CNT/Pt composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, carbon nanotubes and platinum nano particles, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward, and the platinum nano particles growing on the surfaces of the mesoporous spherical tungsten carbide and carbon nanotubes. The WC/CNT composite material comprises mesoporous spherical tungsten carbide with a diameter of 1-5 microns, and carbon nanotubes, with the carbon nanotubes growing on the surface of the mesoporous spherical tungsten carbide and expanding outward. The WC/CNT/Pt composite material of the present invention can be used as an electro-catalyst in a methanol flue battery, significantly improving the catalytic conversion rate and the service life of the catalyst. The WC/CNT composite material can be used as an electro-catalyst in the electro-reduction of a nitro aromatic compound, significantly improving the efficiency of organic electro-synthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanosized ZnO was prepared by polyol synthesis. Fluorescence spectrum of the ZnO colloid at varying pump intensities was studied. The powder was extracted and characterized by XRD and BET. The extracted powder was screen printed on glass substrates using ethyl cellulose as binder and turpinol as solvent. Coherent back scattering studies were performed on the screen printed sample which showed evidence of weak localization. The screen printed pattern showed strong UV emission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present thesis has described the development of some heterogeneous catalysts based on polymer supported dendrimers. Attachment of dendrimers to crosslinked polymer produced new catalysts with combined benefits of both dendrimers and heterogeneous catalysts. These were used as heterogeneous catalysts in selected reactions. All possible attempts were taken to avoid halogenated and aromatic solvents and toxic reagents. In short the present work has dealt with development of environmental friendly catalysts based on dendrimers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research on transition-metal nanoalloy clusters composed of a few atoms is fascinating by their unusual properties due to the interplay among the structure, chemical order and magnetism. Such nanoalloy clusters, can be used to construct nanometer devices for technological applications by manipulating their remarkable magnetic, chemical and optical properties. Determining the nanoscopic features exhibited by the magnetic alloy clusters signifies the need for a systematic global and local exploration of their potential-energy surface in order to identify all the relevant energetically low-lying magnetic isomers. In this thesis the sampling of the potential-energy surface has been performed by employing the state-of-the-art spin-polarized density-functional theory in combination with graph theory and the basin-hopping global optimization techniques. This combination is vital for a quantitative analysis of the quantum mechanical energetics. The first approach, i.e., spin-polarized density-functional theory together with the graph theory method, is applied to study the Fe$_m$Rh$_n$ and Co$_m$Pd$_n$ clusters having $N = m+n \leq 8$ atoms. We carried out a thorough and systematic sampling of the potential-energy surface by taking into account all possible initial cluster topologies, all different distributions of the two kinds of atoms within the cluster, the entire concentration range between the pure limits, and different initial magnetic configurations such as ferro- and anti-ferromagnetic coupling. The remarkable magnetic properties shown by FeRh and CoPd nanoclusters are attributed to the extremely reduced coordination number together with the charge transfer from 3$d$ to 4$d$ elements. The second approach, i.e., spin-polarized density-functional theory together with the basin-hopping method is applied to study the small Fe$_6$, Fe$_3$Rh$_3$ and Rh$_6$ and the larger Fe$_{13}$, Fe$_6$Rh$_7$ and Rh$_{13}$ clusters as illustrative benchmark systems. This method is able to identify the true ground-state structures of Fe$_6$ and Fe$_3$Rh$_3$ which were not obtained by using the first approach. However, both approaches predict a similar cluster for the ground-state of Rh$_6$. Moreover, the computational time taken by this approach is found to be significantly lower than the first approach. The ground-state structure of Fe$_{13}$ cluster is found to be an icosahedral structure, whereas Rh$_{13}$ and Fe$_6$Rh$_7$ isomers relax into cage-like and layered-like structures, respectively. All the clusters display a remarkable variety of structural and magnetic behaviors. It is observed that the isomers having similar shape with small distortion with respect to each other can exhibit quite different magnetic moments. This has been interpreted as a probable artifact of spin-rotational symmetry breaking introduced by the spin-polarized GGA. The possibility of combining the spin-polarized density-functional theory with some other global optimization techniques such as minima-hopping method could be the next step in this direction. This combination is expected to be an ideal sampling approach having the advantage of avoiding efficiently the search over irrelevant regions of the potential energy surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that small quantities of 1,3:2,4-di(4-chlorobenzylidene) sorbitol dispersed in poly(epsilon-caprolactone) provide a very effective self-assembling nanoscale framework which, with a flow field, yields extremely high levels of polymer crystal orientation. During modest shear flow of the polymer melt, the additive forms highly extended nano-particles which adopt a preferred alignment with respect to the flow field. On cooling, polymer crystallisation is directed by these particles. This chloro substituted dibenzylidene sorbitol is considerably more effective at directing the crystal growth of poly(epsilon-caprolactone) than the unsubstituted compound.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic particles are systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover magnetic particles with an organic material, as polymers. In this work, magnetic particles were obtained through covering magnetite particles with poly(methyl methacrylate‐comethacrylic acid) via miniemulsion polymerization process. The resultant materials were characterized X‐ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), zeta potential (��) measurements and vibrating sample magnetometry (VSM). XRD results showed magnetite as the predominant cristalline phase in all samples and that cristallites had nanometric dimensions. Thermogravimetric analysis revealed an increase in polymer thermal stability as a result of magnetite encapsulation. TGA results showed also that the encapsulation efficiency was directly related to nanoparticles s hidrofobicity degree. VSM measurements showed that magnetic polymeric particles were superparamagnetic, so that they may be potentially used for magnetic (bio)separation