104 resultados para Macromolecule


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha-fetoprotein (AFP) is a commercially important polypeptide with important diagnostic. physiological and immunomodulatory functions. Previous studies into the refolding of this macromolecule are contradictory. and variously suggest that AFP denaturation may be irreversible or that refolding may be achieved by reducing denaturant concentration through dilution but not dialysis. Importantly, these same previous studies do not provide quantitative metrics by which the Success of refolding, and the potential for bioprocess development. can be assessed. Moreover, these same studies do not optimize and control refolding redox potential - an important factor considering that AFP contains 32 cysteines which form 16 disulfide bonds. In this current study, a quantitative comparison of recombinant human AFP (rhAFP) refolding by dilution and dialysis is conducted under optimized redox conditions. rhAFP refolding yields were > 35% (dialysis refolding) and > 75% (dilution refolding) as assessed by RP-HPLC and ELISA, with structural Similarity to the native state confirmed by UV spectroscopy. Dialysis refolding yield was believed to be lower because the gradual reduction in denaturant concentration allowed extended conformational searching. enabling more time for undesirable interaction with other protein molecules and/or the dialysis membrane, leading to a Sub-optimal process outcome. Significant yield sensitivity to redox environment was also observed, emphasizing the importance of physicochemical optimization. This study demonstrates that very high refolding yields can be obtained, for a physiologically relevant protein, with optimized dilution refolding. The study also highlights the quantitative metrics and macromolecular physical spectroscopic 'fingerprints' required to facilitate transition from laboratory to process scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work described in this thesis is concerned with mechanisms of contact lens lubrication. There are three major driving forces in contact lens design and development; cost, convenience, and comfort. Lubrication, as reflected in the coefficient of friction, is becoming recognised as one of the major factors affecting the comfort of the current generation of contact lenses, which have benefited from several decades of design and production improvements. This work started with the study of the in-eye release of soluble macromolecules from a contact lens matrix. The vehicle for the study was the family of CIBA Vision Focus® DAILIES® daily disposable contact lenses which is based on polyvinyl alcohol (PVA). The effective release of linear soluble PVA from DAILIES on the surface of the lens was shown to be beneficial in terms of patient comfort. There was a need to develop a novel characterisation technique in order to study these effects at surfaces; this led to the study of a novel tribological technique, which allowed the friction coefficients of different types of contact lenses to be measured reproducibly at genuinely low values. The tribometer needed the ability to accommodate the following features: (a) an approximation to eye lid load, (b) both new and ex-vivo lenses, (c) variations in substrate, (d) different ocular lubricants (including tears). The tribometer and measuring technique developed in this way was used to examine the surface friction and lubrication mechanisms of two different types of contact lenses: daily disposables and silicone hydrogels. The results from the tribometer in terms of both mean friction coefficient and the friction profiles obtained allowed various mechanisms used for surface enhancement now seen in the daily disposable contact lens sector to be evaluated. The three major methods used are: release of soluble macromolecules (such as PVA) from the lens matrix, irreversible surface binding of a macromolecule (such as polyvinyl pyrrolidone) by charge transfer and the simple polymer adsorption (e.g. Pluoronic) at the lens surface. The tribological technique was also used to examine the trends in the development of silicone hydrogel contact lenses. The focus of the principles in the design of silicone hydrogels has now shifted from oxygen permeability, to the improvement of surface properties. Presently, tribological studies reflect the most effective in vitro method of surface evaluation in relation to the in-eye comfort.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microencapsulation processes, based upon the concept of solvent evaporation, have been employed within these studies to prepare microparticles from poly--hydroxybutyrate homopolymers and copolymers thereof with 3-hydroxyvalerate [P(HB-HV) polymers]. Variations in the preparative technique have facilitated the manufacture of two structurally distinct forms of microparticle. Thus, monolithic microspheres and reservoir-type microcapsules have been respectively fabricated by single and double emulsion-solvent evaporation processes. The objective of the studies reported in chapter three is to asses how a range of preparative variables affect the yield, shape and surface morphology of P(HB-HV) microcapsules. The following chapter then describes how microcapsule morphology in general, and microcapsule porosity in particular, can be regulated by blending the fabricating P(HB-HV) polymer with poly--caprolactone [PCL]. One revelation of these studies is the ability to generate uniformly microporous microcapsules from blends of various high molecular weight P(HB-HV) polymers with a low molecular weight form of PCL. These microcapsules are of particular interest because they may have the potential to facilitate the release of an encapsulated macromolecule via an aqueous diffusion mechanism which is not reliant on polymer degradation. In order to investigate this possibility, one such formulation is used in chapter five to encapsulate a wide range of different macromolecules, whose in vitro release behaviour is subsequently evaluated. The studies reported in chapter six centre on the preparation and characterization of hydrocortisone-loaded microspheres, prepared from a range of P(HB-HV) polymers, using a single emulsion-solvent evaporation process. In this chapter, the influence of the organic phase viscosity on the efficiency of drug encapsulation is the focus of initial investigations. Thereafter, it is shown how the strategies previously adopted for the regulation of microcapsule morphology can also be applied to single emulsion systems, with profound implications for the rate of drug release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initial objective of this work was to evaluate and introduce fabrication techniques based on W/0/W double emulsion and 0/W single emulsion systems with solvent evaporation for the incorporation of a surrogate macromolecule (BSA) into microspheres and microcapsules fabricated using P(HB-HV}, PEA and their blends. Biodegradation, expressed as changes in the gross and ultrastructural morphology of BSA loaded microparticulates with time was monitored using SEM concomitant with BSA release. Spherical microparticulates were successfully fabricated using both the W/0/W and 0/W emulsion systems. Both microspheres and microcapsules released BSA over a period of 24 to 26 days. BSA release from P(HB-HV)20% PCL 11 microcapsules increased steadily with time, while BSA release from all other microparticulates was characterised by an initial lag phase followed by exponential release lasting 6-11 days. Microcapsules were found to biodegrade more rapidly than microspheres fabricated from the same polymer. The incubation of microparticulates in newborn calf serum; synthetic gastric juice and pancreatin solution showed that microspheres and microcapsules were susceptible to enzymatic biodegradation. The in vitro incubation of microparticulates in Hank's buffer demonstrated limited biodegradation of microspheres and microcapsules by simple chemical hydrolysis. BSA release was thought to ocurr as a result of the macromolecule diffusing through either inherent micropores or via pores and channels generated in situ by previously dissolved BSA. However, in all cases, irrespective of percentage loading or fabrication polymer, low encapsulation efficiencies were obtained with W/0/W and 0/W techniques (4.2±0.9%- 15.5±0.5%,n=3), thus restricting the use of these techniques for the generation of microparticulate sustained drug delivery devices. In order to overcome this low encapsulation efficiency, a W/0 single emulsion technique was developed and evaluated in an attempt to minimise the loss of the macromolecule into the continuous aqueous phase and increase encapsulation efficiency. Poly(lactide-co-glycolide) [PLCG] 75:25 and 50:50, PEA alone and PEA blended with PLCG 50:50 to accelerate biodegradation, were used to microencapsulate the water soluble antibiotic vancomycin, a putative replacement for gentamicin in the control of bacterial infection in orthopaedic surgery especially during total hip replacement. Spherical microspheres (17.39±6.89~m,n=74-56.5±13.8~m,n=70) were successfully fabricated with vancomycin loadings of 10, 25 and 50%, regardless of the polymer blend used. All microspheres remained structurally intact over the period of vancomycin release and exhibited high percentage yields( 40. 75±2 .86%- 97.16±4.3%,n=3)and encapsulation efficiencies (47.75±9.0%- 96.74±13.2%,n=12). PLCG 75:25 microspheres with a vancomycin loading of 50% were judged to be the most useful since they had an encapsulation efficiency of 96.74+13.2%, n=12 and sustained therapeutically significant vancomycin release (15-25μg/ml) for up to 26 days. This work has provided the means for the fabrication of a spectrum of prototype biodegradable microparticulates, whose biodegradation has been characterised in physiological media and which have the potential for the sustained delivery of therapeutically useful macromolecules including water soluble antibiotics for orthopaedic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has used novel polymer design and fabrication technology to generate bead form polymer based systems, with variable, yet controlled release properties, specifically for the delivery of macromolecules, essentially peptides of therapeutic interest. The work involved investigation of the potential interaction between matrix ultrastructural morphology, in vitro release kinetics, bioactivity and immunoreactivity of selected macromolecules with limited hydrolytic stability, delivered from controlled release vehicles. The underlying principle involved photo-polymerisation of the monomer, hydroxyethyl methacrylate, around frozen ice crystals, leading to the production of a macroporous hydrophilic matrix. Bead form matrices were fabricated in controllable size ranges in the region of 100µm - 3mm in diameter. The initial stages of the project involved the study of how variables, delivery speed of the monomer and stirring speed of the non solvent, affectedthe formation of macroporous bead form matrices. From this an optimal bench system for bead production was developed. Careful selection of monomer, solvents, crosslinking agent and polymerisation conditions led to a variable but controllable distribution of pore sizes (0.5 - 4µm). Release of surrogate macromolecules, bovine serum albumin and FITC-linked dextrans, enabled factors relating to the size and solubility of the macromolecule on the rate of release to be studied. Incorporation of bioactive macromolecules allowed retained bioactivity to be determined (glucose oxidase and interleukin-2), whilst the release of insulin enabled determination of both bioactivity (using rat epididymal fat pad) and immunoreactivity (RIA). The work carried out has led to the generation of macroporous bead form matrices, fabricated from a tissue biocompatible hydrogel, capable of the sustained, controlled release of biologically active peptides, with potential use in the pharmaceutical and agrochemical industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zwitterionic compounds, or zwitterions, are electrically neutral compounds having an equal number of formal unit charges of opposite sign. In common polyzwitterions the zwitterionic groups are usually located in pendent groups rather than the backbone of the macromolecule. Polyzwitterions contain both the anion and cation in the same monomeric unit, unlike polyampholytes which can contain the anion and cation in different monomeric units. The use of cationic and anionic monomers (or monomers capable of becoming charged) in stoichiometric equivalent proportions produces charge-balanced polyampholyte copolymers. Hydrogel materials produced from zwitterionic monomers have been proposed for use and are used in many biomaterial applications but synthetic charge-balanced polyampholyte are less common. Certain properties of hydrogels which are important for their successful use as biomaterials, these include the equilibrium water content, mechanical, surface energy, oxygen permeability, swelling and the coefficient of friction. The zwitterionic monomer N,N-dimethyl-N-(2-acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) was synthesized with 2-hydroxyethly acrylate (HEMA) as the comonomer to produce a series of polyzwitterion hydrogels. To produce charged-balanced copolymer hydrogels two “cationic” monomers were selected; 2-(diethylamino) ethyl methacrylate (DMAEMA) and 3-(dimethylamino) propyl methacrylamide (DMAPMA) and an anionic monomer; 2-acrylamido 2,2 methylpropane sulphonic acid (AMPS). Two series’ of charge-balanced copolymers were synthesized from stoichiometric equivalent ratios of DMAEMA or DMAPMA and AMPS with HEMA as a terpolymer. The zwitterionic copolymer and both charge-balanced copolymers produced clear, cohesive hydrogels. The zwitterionic and charge-balanced copolymers displayed similar EWC’s along with similar mechanical and surface energy properties. The swelling of the zwitterionic copolymer displayed antipolyelectrolyte behavior whereas the charge-balanced copolymers displayed behaviour somewhere between this and a typical polyelectrolyte. This work describes some aspects of the polymerisation and properties of SPDA copolymers and charge-balanced (polyampholyte) copolymers relevant to their potential as biomedical / bioresponsive materials. The biomimetic nature of SPDA together with its compatibility with other monomers makes it a useful and complimentary addition to the building blocks of biomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After sudden ionization of a large molecule, the positive charge can migrate throughout the system on a sub-femtosecond time scale, purely guided by electronic coherences. The possibility to actively explore the role of the electron dynamics in the photo-chemistry of bio-relevant molecules is of fundamental interest for understanding, and perhaps ultimately controlling, the processes leading to damage, mutation and, more generally, to the alteration of the biological functions of the macromolecule. Attosecond laser sources can provide the extreme time resolution required to follow this ultrafast charge flow. In this review we will present recent advances in attosecond molecular science: after a brief description of the results obtained for small molecules, recent experimental and theoretical findings on charge migration in bio-relevant molecules will be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(lactide-co-glycolide), or PLGA, microspheres offer a widely-studied biodegradable option for controlled release of therapeutics. An array of fabrication methodologies have been developed to produce these microspheres with the capacity to encapsulate therapeutics of various types; and produce microspheres of a wide range of sizes for different methods of delivery. The encapsulation, stability, and release profiles of therapeutic release based on physical and thermodynamic properties has also been studied and modeled to an extent. Much research has been devoted to tailoring formulations for improved therapeutic encapsulation and stability as well as selective release profiles. Despite the breadth of available research on PLGA microspheres, further analysis of fundamental principles regarding the microsphere degradation, formation, and therapeutic encapsulation is necessary. This work aims to examine additional fundamental principles related to PLGA microsphere formation and degradation from solvent-evaporation of preformed polymer. In particular, mapping the development of the acidic microenvironment inside the microsphere during degradation and erosion is discussed. Also, the effect of macromolecule size and conformation is examined with respect to microsphere diameter and PLGA molecular weight. Lastly, the effects of mechanical shearing and protein exposure to aqueous media during microsphere formation are examined. In an effort to better understand the acidic microenvironment development across the microsphere diameter, pH sensitive dye conjugated to protein that undergoes conformational change at different acidic pH values was encapsulated in PLGA microspheres of diameters ranging from 40 µm to 80 µm, and used in conjunction with fluorescence resonance energy transfer to measure the radial pH change in the microspheres. Qualitative analysis of confocal micrographs was used to correlate fluorescence intensity with pH value, and obtain the radial pH across the center of the microsphere. Therapeutic encapsulation and release from polymeric microspheres is governed by an interconnected variety of factors, including the therapeutic itself. The globular protein bovine serum albumin, and the elongated and significantly smaller enzyme, lysozyme, were encapsulated in PLGA microspheres ranging from 40 µm to 80 µm in diameter. The initial surface morphology upon microsphere formation, release profiles, and microsphere erosion characteristics were explored in an effort to better understand the effect of protein size, conformation, and known PLGA interaction on the formation and degradation of PLGA microspheres and macromolecule release, with respect to PLGA molecular weight and microsphere diameter. In addition to PLGA behavior and macromolecule behavior, the effect of mechanical stresses during fabrication was examined. Two similar solvent extraction techniques were compared for the fabrication of albumin loaded microspheres. In particular, the homogeneity of the microspheres as well as capacity to retain encapsulated albumin were compared. This preliminary study paves the way for a more rigorous treatment of the effect of mechanical forces present in popular microsphere fabrication. Several factors affecting protein release from PLGA microspheres are examined herein. The technique explored for spatial resolution of the pH inside the microsphere proved mildly effective in producing a reliable method of mapping microsphere pH changes. However, notable trends with respect to microsphere size, PLGA molecular weight, and microsphere porosity were observed. Proposed methods of improving spatial resolution of the acidic microenvironment are also provided. With respect to microsphere formation, studies showed that albumin and lysozyme had little effect on the internal homogeneity of the microsphere. Rather, ionic interactions with PLGA played a more significant role in the encapsulation and release of each macromolecule. Studies also showed that higher instances of mechanical stress led to less homogeneous microspheres with lower protein encapsulation. This suggests that perhaps instead of or in addition to modifying the microsphere formation formulation, the fabrication technique itself should be more closely considered in achieving homogeneous microspheres with desired loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nas últimas duas décadas, o descarte e o acúmulo de embalagens não biodegradáveis têm agravado os problemas ambientais. Uma das soluções encontradas, particularmente na área de embalagens de alimentos, é o desenvolvimento de filmes a partir de polímeros que possam substituir os materiais sintéticos. Fontes alternativas de proteína, como os resíduos de pescados, tornam-se importante, pois estes representam de 60 a 70% da matéria-prima e são descartados pelas indústrias de filetagem contribuindo com os danos ao meio ambiente. As propriedades funcionais dos filmes biodegradáveis são resultantes das características das macromoléculas utilizadas, das interações entre os constituintes envolvidos na formulação (macromolécula, solvente, plastificante e outros aditivos), dos parâmetros de fabricação (temperatura, tipo de solvente, pH, entre outras), do processo de dispersão da solução filmogênica (pulverização, espalhamento, etc.) e das condições de secagem. Um problema limitante no uso de filmes biodegradáveis a base de proteínas de pescado é a sua susceptibilidade à umidade, devido à hidrofilicidade dos aminoácidos das moléculas de proteína. O objetivo geral do trabalho foi desenvolver e caracterizar filmes a base de isolado proteico de resídeos de corvina (IPC) e óleo de palma (OP). O desenvolvimento dos filmes foi estudado em duas etapas. Neste estudo utilizou-se resíduos de corvina (Micropogonias furnieri) para a obtenção do isolado protéico, glicerol como plastificante e óleo de palma para conferir hidrofobicidade ao filme. Na primeira etapa, o objetivo foi investigar o efeito das concentrações de IPC, de glicerol e do pH sobre as propriedades dos filmes de proteína de resíduos de corvina (Micropogonias furnieri). Os filmes foram avaliados quanto aos parâmetros de cor, opacidade, propriedades mecânicas, espessura, solubilidade em água, permeabilidade de vapor de água (PVA) e propriedades morfológicas. Como resultado foi observado que a opacidade e a luminosidade dos filmes não foram afetados pelas variáveis do processo. Os filmes de IPC ficaram amarelados e opacos. Apresentaramse mais claros quando elaborados com baixas concentrações de IPC e altas concentrações de glicerol nas soluções filmogênicas. A menor solubilidade em água ocorreu nos filmes com pH baixo e menores concentrações de glicerol. Com relação as propriedades mecânicas, os filmes apresentaram alta elongação e sua resistência à tração aumentou quando utilizadas maiores concentrações de IPC, menores concentrações de glicerol e pHs mais baixos.Os filmes apresentaram superficies ásperas e irregulares. Na segunda etapa foram elaborados filmes biodegradáveis de IPC contendo diferentes concentrações de óleo de palma (OP) (10 e 20 g de OP /100g de IPC) e suas propriedades de barreira, mecânicas, físico-químicas, térmicas e morfológicas foram estudadas. A adição de OP aumentou as espessuras dos filmes com 2 e 4% de IPC, no entanto a solubilidade não foi afetada pela adição do OP. Os filmes com 3 e 4% de IPC ficaram menos permeáveis a água quando incorporado 20% de OP nos mesmos. A opacidade dos filmes aumentou com a adição do OP. A incorporação do OP nos filmes resultou em uma diminuição da resistência à tração e no aumento da elongação dos filmes. Nos filmes com 2% de IPC o aumento na elongação foi significativo apenas quando adicionado 20% de OP. O aparecimento de apenas uma temperatura de fusão nos filmes sugeriu uma homogeneidade dos mesmos. A decomposição térmica dos filmes iniciou em torno de 120 -173ºC. Os filmes apresentaram uma superfície descontínua.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lasiodiplodan is an exocellular β-glucan with biological functionalities such as antioxidant, antiproliferative, hypocholesterolemic, protective activity against DNA damage induced by doxorubicin and hypoglycemic activity. Chemical derivatization of polysaccharide macromolecules has been considered as a potentiating mechanism for bioactivity. In this context, this work proposes the derivatization of lasiodiplodan by acetylation. Acetic anhydride was used as derivatizing agent and pyridine as catalyst and reaction medium. The derivatives obtained were evaluated by its water solubility, degree of substitution (DS), antioxidant potential, and characterized by infrared spectroscopy (FT-IR), thermal analysis, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. Acetylated derivatives with different degrees of substitution (1.26; 1.03; 0.66 and 0.48) were obtained, and there was correlation between the concentration of derivatizing agent and DS. FT-IR spectroscopy analysis confirmed the insertion of acetyl groups into derivatized macromolecules (LAS-AC) through of specific bands concerning to carbonyl group (C = O) and increase in C-O vibration. SEM analysis indicated that native lasiodiplodan presents morphological structure in the form of thin films with translucent appearance and folds along its length. Derivatization led to morphological changes in the polymer, including aspects thickness, translucency and agglomeration. Thermal analysis indicated the native sample and derivative with DS 0.48 presented three weight loss stages. The first stage occurred until 125 ° C (loss of water) and there were two consecutive events of weight loss (200 ° C - 400 ° C) attributed to molecule degradation. Samples with DS 1.26; 1.03 and 0.66 demonstrated four weight loss stages. The first stage occurred until 130 ° C (loss of water), following by two consecutive events of weight loss (200 ° C - 392 ° C) attributed to degradation of the biopolymer. The fourth stage was between 381 ° C and 532 ° C (final decomposition) with exothermic peaks between 472 ° C and 491 ° C. X-ray diffraction patterns showed that native and acetylated lasiodiplodan have amorphous structure with semicrystalline regions. Derivatization did not contribute to increased solubility of the macromolecule, but potentiated its antioxidant capacity. Acetylation of lasiodiplodan allowed to obtaining a new macromolecule with higher antioxidant potential than the native molecule and with technological properties applicable in various industrial sectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustained drug release systems provide many advantages over traditional delivery methods such as extending the time in which the drug is found to be within an effective concentration within the therapeutic window, which decreases the frequency of administration of the drug, and increases patient compliance. Research using polyacrylamide crosslinked by oligomers containing an aptamer sequence, has demonstrated a pulsatile release over 50 minutes triggered by a 2 mM target adenosine concentration. This thesis aims to build off this concept by designing a system that delivers in a sustained manner when triggered by micromolar target concentrations reflective of disease in vivo, using macromolecular targets. For example, the disease wet age related macular degeneration (wet AMD) is associated with increased concentrations of the protein vascular endothelial growth factor (VEGF-A) – a macromolecule. Patients with wet AMD would benefit from the implantation of devices or microspheres that release drugs in a sustained manner in response to local VEGF concentrations. In this thesis, we hypothesize that the protein lysozyme, used to demonstrate proof-of-concept, could trigger the increased release of drugs from oligomer-crosslinked alginate. The objectives are to (i) demonstrate sustained release from alginate, (ii) design oligomer crosslinked alginate that degrades in response to lysozyme, and then (iii) use these systems to control the release of FITC-dextran with and without lysozyme. A series of control experiments and analyses were used to optimize the crosslinking of alginate by annealed oligomers. The cumulative release of FITC-dextran (MW 20,000) from oligomer crosslinked alginate increased by 3.4 μg when lysozyme (3 μM) was introduced at 48 hours, as opposed to controls which released only 0.2 μg. FITC-loaded alginate microspheres coated by oligomer-crosslinked alginate released 15% more FITC-dextran over 120 hours when placed into 3 μM of lysozyme than without lysozyme. Controls of alginate crosslinked with PEG or control oligomers (without a lysozyme aptamer sequence) had no changes in release with lysozyme. The incorporation of a lysozyme aptamer onto oligomers used to crosslink alginate disks or alginate coatings on microspheres resulted in different diffusion and release of FITC-dextran into PBS with or without lysozyme. This approach could be adapted for the delivery of drugs to diseases with specific protein profiles such as wet AMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic nicotine delivery systems (ENDS) use has recently grown. E-cig generates carcinogenic chemical compounds and reactive oxygen species (ROS). Carbonyls and ROS are formed when the liquid comes into contact with the heating element. In this study the chemical and biological effects of coil resistance applied on the same device were investigated. A preliminary in-vivo study the new heat-not-burn devices (IQOS®) has been conducted to evaluate the effect of the device on antioxidant biomarkers. The amount of formaldehyde, acetaldehyde, acrolein was measured by GC-MS analysis. The two e-liquids used for carbonyls detection differed only for the presence of nicotine. The nicotine-free liquid was then used for the detection of ROS in the aerosol. The impact of the non-nicotine vapor on cell viability in H1299 human lung carcinoma cells, as well as the biological effects in a rat model of e-cig aerosol exposure, were also evaluated. After the exposure of Sprague Dawley rats to e-cig and IQOS® aerosol, the effect of 28-day treatment was examined on enzymatic and non-enzymatic antioxidant response, lung inflammation, blood homeostasis and tissue damage by using scanning electron microscope (SEM) technique. The results show a significant correlation between the low resistance and the generation of higher concentrations of the selected carbonyls and ROS in aerosols. Cell viability was reduced with an inverse relation to coil resistance. The experimental model highlighted an impairment of the pulmonary antioxidant and detoxifying machinery. Frames from SEM show disorganization of alveolar and bronchial epithelium. IQOS® exposed animals shows a significant production of ROS related to the unbalance of antioxidant defense and alteration of macromolecule integrity. This research demonstrates how several toxicological aspects can potentially occur in e-cig consumers who use low resistance device coupled with nicotine-free liquid. ENDS may expose users to hazardous compounds, which, may promote chronic pathologies and degenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins, the most essential biological macromolecules, are involved in nearly every aspect of life. The elucidation of their three-dimensional structures through X-ray analysis has significantly contributed to our understanding of fundamental mechanisms in life processes. However, the obstacle of obtaining high-resolution protein crystals remains significant. Thus, searching for materials that can effectively induce nucleation of crystals is a promising and active field. This thesis work characterizes and prepares albumin nanoparticles as heterogeneous nucleants for protein crystallization. These stable Bovine Serum Albumin nanoparticles were synthesized via the desolvation method, purified efficiently, and characterized in terms of dimension, morphology, and secondary structure. The ability of BSA-NPs to induce macromolecule nucleation was tested on three model proteins, exhibiting significant results, with larger NPs inducing more nucleation. The second part of this work focuses on the structural study, mainly through X-ray crystallography, of five chloroplast and cytosolic enzymes involved in the fundamental cellular processes of two photosynthetic organisms, Chlamydomonas reinhardtii and Arabidopsis thaliana. The structures of three enzymes involved in the Calvin-Benson-Bassham Cycle, phosphoribulokinase, troseposphatisomerase, and ribulosiophosphate epimerase from Chlamydomonas reinhardtii, were solved to investigate their catalytic and regulatory mechanisms. Additionally, the structure of nitrosylated-CrTPI made it possible to identify Cys14 as a target for nitrosylation, and the crystallographic structure of CrRPE was solved for the first time, providing insights into its catalytic and regulatory properties. Finally, the structure of S-nitrosoglutathione reductase, AtGSNOR, was compared with that of AtADH1, revealing differences in their catalytic sites. Overall, seven crystallographic structures, including partially oxidized CrPRK, CrPRK/ATP, CrPRK/ADP/Ru5P, CrTPI-nitrosylated, apo-CrRPE, apo-AtGSNOR, and AtADH1-NADH, were solved and are yet to be deposited in the PDB.