906 resultados para Machine-tool industry.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation and can also improve productivity and enhance system’s safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. Although a variety of prognostic methodologies have been reported recently, their application in industry is still relatively new and mostly focused on the prediction of specific component degradations. Furthermore, they required significant and sufficient number of fault indicators to accurately prognose the component faults. Hence, sufficient usage of health indicators in prognostics for the effective interpretation of machine degradation process is still required. Major challenges for accurate longterm prediction of remaining useful life (RUL) still remain to be addressed. Therefore, continuous development and improvement of a machine health management system and accurate long-term prediction of machine remnant life is required in real industry application. This thesis presents an integrated diagnostics and prognostics framework based on health state probability estimation for accurate and long-term prediction of machine remnant life. In the proposed model, prior empirical (historical) knowledge is embedded in the integrated diagnostics and prognostics system for classification of impending faults in machine system and accurate probability estimation of discrete degradation stages (health states). The methodology assumes that machine degradation consists of a series of degraded states (health states) which effectively represent the dynamic and stochastic process of machine failure. The estimation of discrete health state probability for the prediction of machine remnant life is performed using the ability of classification algorithms. To employ the appropriate classifier for health state probability estimation in the proposed model, comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault data of three different faults in a high pressure liquefied natural gas (HP-LNG) pump. As a result of this comparison study, SVMs were employed in heath state probability estimation for the prediction of machine failure in this research. The proposed prognostic methodology has been successfully tested and validated using a number of case studies from simulation tests to real industry applications. The results from two actual failure case studies using simulations and experiments indicate that accurate estimation of health states is achievable and the proposed method provides accurate long-term prediction of machine remnant life. In addition, the results of experimental tests show that the proposed model has the capability of providing early warning of abnormal machine operating conditions by identifying the transitional states of machine fault conditions. Finally, the proposed prognostic model is validated through two industrial case studies. The optimal number of health states which can minimise the model training error without significant decrease of prediction accuracy was also examined through several health states of bearing failure. The results were very encouraging and show that the proposed prognostic model based on health state probability estimation has the potential to be used as a generic and scalable asset health estimation tool in industrial machinery.
Resumo:
Knowledge management (KM) provides a structured process to establish the link between knowledgebased assets within an organisation and its desired business objectives. Although KM issues are becoming increasingly important to the construction industry, there is currently no measurement tool for assessing the implementation of KM programmes. This paper reports on the development of such a tool which can be used as both a means of self-assessment and also for benchmarking purposes. Important practices needed for successful KM implementation were identified from the literature and via a self-administered survey targeting large and medium construction organisations in Hong Kong. Survey findings demonstrate the potential of the proposed self-assessment tool to measure the individual’s perception of the relative importance of KM antecedents and practices, also providing early insight of KM implementation by highlighting the negative gaps between what “is” and “should be” happening, thus identifying areas that need re alignment of KM strategies and tactics. The paper also suggests this tool could be further developed to help organisations to formulate and modify their KM programmes according to their own specific internal business environment, and the nature of their projects.
Resumo:
Sustainability is a key driver for decisions in the management and future development of industries. The World Commission on Environment and Development (WCED, 1987) outlined imperatives which need to be met for environmental, economic and social sustainability. Development of strategies for measuring and improving sustainability in and across these domains, however, has been hindered by intense debate between advocates for one approach fearing that efforts by those who advocate for another could have unintended adverse impacts. Studies attempting to compare the sustainability performance of countries and industries have also found ratings of performance quite variable depending on the sustainability indices used. Quantifying and comparing the sustainability of industries across the triple bottom line of economy, environment and social impact continues to be problematic. Using the Australian dairy industry as a case study, a Sustainability Scorecard, developed as a Bayesian network model, is proposed as an adaptable tool to enable informed assessment, dialogue and negotiation of strategies at a global level as well as being suitable for developing local solutions.
Resumo:
Sustainability is a key driver for decisions in the management and future development of organisations and industries. However, quantifying and comparing sustainability across the triple bottom line (TBL) of economy, environment and social impact, has been problematic. There is a need for a tool which can measure the complex interactions within and between the environmental, economic and social systems which affect the sustainability of an industry in a transparent, consistent and comparable way. The authors acknowledge that there are currently numerous ways in which sustainability is measured and multiple methodologies in how these measurement tools were designed. The purpose of this book is to showcase how Bayesian network modelling can be used to identify and measure environmental, economic and social sustainability variables and to understand their impact on and interaction with each other. This book introduces the Sustainability Scorecard, and describes it through a case study on sustainability of the Australian dairy industry. This study was conducted in collaboration with the Australian dairy industry.
Bayesian networks as a complex system tool in the context of a major industry and university project
Resumo:
The project will produce practical and relevant benchmarks, protocols and recommendations for the adoption of remote sensing technologies for improved in season management and therefore production within the Australian sugar cane industry.
Resumo:
The rapid growth of the Chinese tourism has stimulated competition within tourism-related industries, such as the hospitality industry. The purpose of this study is to examine the Chinese consumer reaction to different promotional tools used by hotels in China and, thus, to provide a deeper understanding for marketers of how to use sales promotion effectively to generate appropriate consumer responses. An experimental survey was administered yielding a total sample of 319 Chinese customers, who were probed using different types of sales promotion tools. Data analysis indicates that bonus packs (e.g. a 3-night stay at a hotel for the price of 2) induced the highest consumer perceived value, brand switching, and purchase acceleration intention, whereas price discounts resulted in the highest intention to spend more. Although this study has its limitations given its reliance on a convenience sample, it offers insightful practical implications for hotel business owners in Asia regarding targeting the right customers with the right promotional tools, where it is proposed that bonus packs successfully attract new Chinese customers and price discounts support in generating more sales.
Resumo:
A possible way for increasing the cutting tool life can be achieved by heating the workpiece in order to diminish the shear stress of material and thus decrease the machining forces. In this study, quartz electrical resistances were set around the workpiece for heating it during the turning. In the tests, heat-resistant austenitic alloy steel was used, hardenable by precipitation, mainly used in combustion engine exhaustion valves, among other special applications for industry. The results showed that in the hot machining the cutting tool life can be increased by 340% for the highest cutting speed tested and had a reduction of 205% on workpiece surface roughness, accompanied by a force decrease in relation to conventional turning. In addition, the chips formed in hot turning exhibited a stronger tendency to continuous chip formation indicating less energy spent in material removal process. Microhardness tests performed in the workpieces subsurface layers at 5 m depth revealed slightly higher values in the hot machining than in conventional, showing a tendency toward the formation of compressive residual stress into plastically deformed layer. The hot turning also showed better performance than machining using cutting fluid. Since it is possible to avoid the use of cutting fluid, this machining method can be considered better for the environment and for the human health.
Resumo:
In this paper a mathematical model that combines lot-sizing and cutting-stock problems applied to the furniture industry is presented. The model considers the usual decisions of the lot sizing problems, as well as operational decisions related to the cutting machine programming. Two sets of a priori generated cutting patterns are used, industry cutting patterns and a class of n-group cutting patterns. A strategy to improve the utilization of the cutting machine is also tested. An optimization package was used to solve the model and the computational results, using real data from a furniture factory, show that a small subset of n-group cutting patterns provides good results and that the cutting machine utilization can be improved by the proposed strategy.