977 resultados para MURINE
Resumo:
During the schistosomiasis infection there is a [quot ]dance of the cells[quot ], varying from site to site and related to the time of infection. 1 - Eosinophil levels exhibit a bimodal pattern, with the first peak related to the egg deposition and maturation and increased Kupfferian hyperplasia; the second peak precedes the death of some adult worms; 2 - The peritoneal eosinophilic levels are inversely proportional to the blood eosinophilic levels; 3 - Eosinopoiesis in the bone marrow begins at day 40, reaching the highest levels at day 50 and coincides with hepatic eosinophilic and neutrophilic metaplasia; 4 - Peritoneal mast cell levels present a bimodal pattern similar to the blood eosinophils, and inverse to the peritoneal eosinophils. They also show a cyclic behaviour within the hepatic and intestinal granulomas. Integral analysis of the events related to the eosinophils in the blood, bone marrow, peritoneal cavity and hepatic and intestinal granulomas allows the detection of two important eosinophilic phases: the first is due to mobilization and redistribution of the marginal pool and the second originates from eosinophilic production in the bone marrow and liver. The productive phase is characterized by an increase in the number of eosinophils and monocyte/macrophages, and a decrease in neutrophils and stabilization of megakariocytes and erithroid lineages.
Resumo:
INTRODUCTION: Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS: L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION: L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.
Resumo:
Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.
Resumo:
Mice from the majority of inbred strains are resistant to infection by Leishmania major, an obligate intracellular protozoan parasite of macrophages in the mammalian host. In contrast, mice from BALB strains are unable to control infection and develop progressive disease. In this model of infection, genetically determined resistance and susceptibility have been clearly shown to result from the appearance of parasite-specific CD4+ T helper 1 or T helper 2 cells, respectively. This murine model of infection is considered as one of the best experimental systems for the study of the mechanisms operating in vivo at the initiation of polarised T helper 1 and T helper 2 cell maturation. Among the several factors influencing Th cell development, cytokines themselves critically regulate this process. The results accumulated during the last years have clarified some aspects of the role played by cytokines in Th cell differentiation. They are providing critical information that may ultimately lead to the rational devise of means by which to tailor immune responses to the effector functions that are most efficient in preventing and/or controlling infections with pathogens.
Resumo:
BACKGROUND: Humanized murine models comprise a new tool to analyze novel therapeutic strategies for allergic diseases of the intestine.¦OBJECTIVE: In this study we developed a human PBMC-engrafted murine model of allergen-driven gut inflammation and analyzed the underlying immunologic mechanisms.¦METHODS: Nonobese diabetic (NOD)-scid-γc(-/-) mice were injected intraperitoneally with human PBMCs from allergic donors together with the respective allergen or not. Three weeks later, mice were challenged with the allergen orally or rectally, and gut inflammation was monitored with a high-resolution video miniendoscopic system, as well as histologically.¦RESULTS: Using the aeroallergens birch or grass pollen as model allergens and, for some donors, also hazelnut allergen, we show that allergen-specific human IgE in murine sera and allergen-specific proliferation and cytokine production of human CD4(+) T cells recovered from spleens after 3 weeks could only be measured in mice treated with PBMCs plus allergen. Importantly, these mice had the highest endoscopic scores evaluating translucent structure, granularity, fibrin, vascularity, and stool after oral or rectal allergen challenge and a strong histologic inflammation of the colon. Analyzing the underlying mechanisms, we demonstrate that allergen-associated colitis was dependent on IgE, human IgE receptor-expressing effector cells, and the mediators histamine and platelet-activating factor.¦CONCLUSION: These results demonstrate that allergic gut inflammation can be induced in human PBMC-engrafted mice, allowing the investigation of pathophysiologic mechanisms of allergic diseases of the intestine and evaluation of therapeutic interventions.
Resumo:
Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures.
Resumo:
Previous work in our laboratory, mainly foccused the prospects of achieving resistance against Schistosoma mansoni infection with adult worm-derived antigens in the form of a soluble extract (SE). This extract obtained by incubation of living adult schistosomes in saline, contains a large number of distinct molecules and was actually shown to be a significantly protective in different outbred animals models such as Swiss mice and rabbits. It thus appeared worthwile to investigate the potencial protective activity of SE in different inbred strains of mice, known to be highly susceptible to the infection. Herein we present data showing that DBA/2 mice, once immunized with SE acquire significant levels of resistance to a S. mansoni cercarial challenge. In addition, preliminary studies on the immune system of immunized animals reveled that, injection of SE caused no general inbalance of B or T cell responses.
Resumo:
The induction of granuloma formation by soluble egg antigens (SEA) of Schistosoma mansoni is accompanied by T cell-mediated lymphokine production that regulates the intensity of the response. In the present study we have examined the ability of SDS-PAGE fractioned SEA proteins to elicit granulomas and lymphokine production in infected and egg-immunized mice. At the acute stage of infection SEA fractions (<21, 25-30, 32-38, 60-66, 70-90, 93-125, and > 200 kD) that elicited pulmonary granulomas also elicited IL-2, IL-4 lymphokine production. At the chronic stage a diminished number of fractions (60-66, 70-90, 93-125, and > 200 kD) were able to elicit granulomas with an overall decrease in IL-2, IL-4 production. Granulomas were elicited by larval-egg crossreactive and egg-specific fractions at both the acute and chronic stage of the infection. Examination of lymphokine production from egg-immunized mice demonstrated that as early as 4 days IL-2 was produced by spleen cells stimulated with <21, 32-38, 40-46, 93-125, and >200 kD fractions. By 16 days, IL-2production was envoked by 8 of 9 fractions. IL-4 production at 4 days in response to all fractions was minimal while at 16 days IL-4 was elicited with the < 21, 25-30, 50-56, 93-125, and > 200 kD fractions. The present study reveals differences in the range of SEA fractions able to elicit granulomas and IL-2, IL-4 production between acute and chronic stages of infection. Additionally, this study demonstrates sequential (IL-2 followed by IL-4) lymphokine production during the primary egg antigen response.
Resumo:
After the acute hyperergic phase of schistosomal infection, the chronic phase of the disease corresponds to the estabilishment of a relative equilibrium between the host and the parasite. This involves: (1) A shift from the predominance of the TH2 response observed in the acute phase, to the predominance of the TH1 response in the chronic phase of the disease, with modification of lymphokine and immunoglobulin secretions patterns. (2) Redistribution of hosts responses to parasite, with predominance of systemic controls in the acute phase, and a shift towards local tissue responses in the chronic phase. This redistribution relieves the hyperergic responses involving the whole body of the host, and delimits cellular and molecular reactions to parasites to only those tissues that are directly involved by the adult parasites and their eggs. Mobilization of eosinophil granulocytes in schistosomal periovular granulomas is one of examples of this redistribution.
Resumo:
The present study was performed to assess the interlaboratory reproducibility of the molecular detection and identification of species of Zygomycetes from formalin-fixed paraffin-embedded kidney and brain tissues obtained from experimentally infected mice. Animals were infected with one of five species (Rhizopus oryzae, Rhizopus microsporus, Lichtheimia corymbifera, Rhizomucor pusillus, and Mucor circinelloides). Samples with 1, 10, or 30 slide cuts of the tissues were prepared from each paraffin block, the sample identities were blinded for analysis, and the samples were mailed to each of seven laboratories for the assessment of sensitivity. A protocol describing the extraction method and the PCR amplification procedure was provided. The internal transcribed spacer 1 (ITS1) region was amplified by PCR with the fungal universal primers ITS1 and ITS2 and sequenced. As negative results were obtained for 93% of the tissue specimens infected by M. circinelloides, the data for this species were excluded from the analysis. Positive PCR results were obtained for 93% (52/56), 89% (50/56), and 27% (15/56) of the samples with 30, 10, and 1 slide cuts, respectively. There were minor differences, depending on the organ tissue, fungal species, and laboratory. Correct species identification was possible for 100% (30 cuts), 98% (10 cuts), and 93% (1 cut) of the cases. With the protocol used in the present study, the interlaboratory reproducibility of ITS sequencing for the identification of major Zygomycetes species from formalin-fixed paraffin-embedded tissues can reach 100%, when enough material is available.