358 resultados para MTS
Resumo:
Detecting changes between images of the same scene taken at different times is of great interest for monitoring and understanding the environment. It is widely used for on-land application but suffers from different constraints. Unfortunately, Change detection algorithms require highly accurate geometric and photometric registration. This requirement has precluded their use in underwater imagery in the past. In this paper, the change detection techniques available nowadays for on-land application were analyzed and a method to automatically detect the changes in sequences of underwater images is proposed. Target application scenarios are habitat restoration sites, or area monitoring after sudden impacts from hurricanes or ship groundings. The method is based on the creation of a 3D terrain model from one image sequence over an area of interest. This model allows for synthesizing textured views that correspond to the same viewpoints of a second image sequence. The generated views are photometrically matched and corrected against the corresponding frames from the second sequence. Standard change detection techniques are then applied to find areas of difference. Additionally, the paper shows that it is possible to detect false positives, resulting from non-rigid objects, by applying the same change detection method to the first sequence exclusively. The developed method was able to correctly find the changes between two challenging sequences of images from a coral reef taken one year apart and acquired with two different cameras
Resumo:
When underwater vehicles navigate close to the ocean floor, computer vision techniques can be applied to obtain motion estimates. A complete system to create visual mosaics of the seabed is described in this paper. Unfortunately, the accuracy of the constructed mosaic is difficult to evaluate. The use of a laboratory setup to obtain an accurate error measurement is proposed. The system consists on a robot arm carrying a downward looking camera. A pattern formed by a white background and a matrix of black dots uniformly distributed along the surveyed scene is used to find the exact image registration parameters. When the robot executes a trajectory (simulating the motion of a submersible), an image sequence is acquired by the camera. The estimated motion computed from the encoders of the robot is refined by detecting, to subpixel accuracy, the black dots of the image sequence, and computing the 2D projective transform which relates two consecutive images. The pattern is then substituted by a poster of the sea floor and the trajectory is executed again, acquiring the image sequence used to test the accuracy of the mosaicking system
Resumo:
A major obstacle to processing images of the ocean floor comes from the absorption and scattering effects of the light in the aquatic environment. Due to the absorption of the natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion, and, as the vehicle moves, induce shadows in the scene. For this reason, the first step towards application of standard computer vision techniques to underwater imaging requires dealing first with these lighting problems. This paper analyses and compares existing methodologies to deal with low-contrast, nonuniform illumination in underwater image sequences. The reviewed techniques include: (i) study of the illumination-reflectance model, (ii) local histogram equalization, (iii) homomorphic filtering, and, (iv) subtraction of the illumination field. Several experiments on real data have been conducted to compare the different approaches
Resumo:
This paper presents a complete solution for creating accurate 3D textured models from monocular video sequences. The methods are developed within the framework of sequential structure from motion, where a 3D model of the environment is maintained and updated as new visual information becomes available. The camera position is recovered by directly associating the 3D scene model with local image observations. Compared to standard structure from motion techniques, this approach decreases the error accumulation while increasing the robustness to scene occlusions and feature association failures. The obtained 3D information is used to generate high quality, composite visual maps of the scene (mosaics). The visual maps are used to create texture-mapped, realistic views of the scene
Resumo:
Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach
Resumo:
En la literatura existen descritas varias técnicas de preoxigenación aplicadas a diferentes pacientes y realizadas con diferentes flujos o fracciones inspiradas de oxigeno, sin embargo no se encuentran descripciones ni estudios realizados con respecto a este tópico en pacientes ubicados por encima de los 1000 mts sobre el nivel del mar. El objetivo del presente estudio es describir el patrón de saturación con oxigeno al 100% obteniendo fracción espirada de oxígeno (EtO2) >90% y Saturación de oxígeno (SaO2) > 99%, así como el patrón de normalización de la saturación de oxigeno con una fracción inspirada del 21% con cuatro técnicas estandarizadas de preoxigenación, en personas voluntarias sanas pertenecientes a la Fundación Cardio Infantil a 2600 metros sobre el nivel del mar. Materiales y métodos: Este es un estudio cuasiexperimental en personas adultas voluntarias sanas pertenecientes a la Fundación Cardio Infantil, los cuales son sometidos a toma de saturación de oxígeno basal y luego se les aplica preoxigenación con fracción inspirada oxigeno (FiO2) al 100% con un flujo de 10Lt/min, mediante sello de máscara facial con arnés: Simultáneamente se realiza una medición de la fracción espirada de oxígeno (ETO2) y oximetría de pulso (SaO2) cada 15 segundos con cada una de las cuatro pruebas de preoxigenación (volumen corriente por 3 minutos, 8 capacidades vitales, volumen corriente hasta ETO2 de =90% y capacidades vitales hasta ETO2 =90%) y luego medición del tiempo de normalización de la saturación respirando al oxígeno con FiO2 al 21 % hasta alcanzar nuevamente la SaO2 basal, con cada técnica. Resultados: No existe diferencia significativa en la aplicación de las técnicas de preoxigenación ni tampoco en el tiempo de normalización de la saturación de oxígeno con FiO2 al 21 % al nivel de Bogotá con las cuatro técnicas de preoxigenación aplicadas a nuestros pacientes. Conclusión: Las cuatro técnicas de preoxigenación son efectivas, sin embargo recomendamos el uso de técnicas que buscan una ETO2=90%. Por otra parte encontramos que el tiempo de recuperación de la saturación basal es de 3,9 minutos en personas voluntarias sanas a 2600 mts sobre el nivel del mar, la cual es inferior comparada con los 10 minutos que toma la normalización de la saturación de oxígeno a 0 mts sobre el nivel del mar descritos previamente en la literatura. Hace falta realizar estudios de preoxigenación y apnea en pacientes a nuestra altura (2600 mts sobre el nivel del mar) para confirmar que el tiempo de desaturación es significativamente menor que a nivel del mar. Palabras Claves: Preoxigenación, Fracción espirada de O2 (EtO2), saturación de oxígeno (SaO2).