960 resultados para MODIFIED GOLD ELECTRODE
Resumo:
In this study, electrode responses to a large number of electroactive species with different standard potentials at the molybdenum oxide-modified carbon fibre microdisk array (CFMA) electrode were investigated. The results demonstrated that the electrochemical behavior for those redox species with formal potentials more positive than similar to 0.0 V at the molybdenum oxide-modified CFMA electrode were affected by the range and direction of the potential scan, which were different from that at a bare CFMA electrode. If the lower limit of the potential scan was more positive than the reduction potential of the molybdenum oxide film, neither the oxidation nor the reduction peaks of the redox species tested could be observed. This indicates that electron transfer between the molybdenum oxide film on the electrode and the electroactive species in solution is blocked due to the existence of a high resistance between the film and electrolyte in these potential ranges. If the lower limit of the potential scan was more negative than the reduction potential of the molybdenum oxide film (similar to - 0.6 V), the oxidation peaks of these species occurred at the potentials near their formal potentials. In addition, the electrochemical behavior of these redox species at the molybdenum oxide-modified CFMA electrode showed a diffusionless electron transfer process. On the other hand, the redox species with formal potentials more negative than similar to - 0.2 V showed similar reversible voltammetric behaviors at both the molybdenum oxide-modified CFMA electrode and the bare electrode. This can be explained by the structure changes of the film before and after reduction of the film. In addition we also observed that the peak currents of some redox species at the modified electrode were much larger than those at a bare electrode under the same conditions, which has been explained by the interaction between these redox species and the reduction state of the molybdenum oxide film. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The monolayer of cytochrome c oxidase maintaining physiological activity and attached covalently to the self-assembled monolayers of 3-mercaptopropionic acid (MPA) on a gold electrode was obtained. The results of cyclic voltammetry show that direct electron transfer between cytochrome c oxidase and the electrode surface is a fast and diffusionless process. MPA has a dual role as both electrode modifier and the bridging molecule which: keeps cytochrome c oxidase at an appropriate orientation without denaturation and enables direct electron transfer between the protein and the modified electrode. Immobilized cytochrome c oxidase exhibits biphasic phenomena between the concentration of the electrolyte and the normal potentials; meanwhile its electrochemical behavior is also influenced by the buffer components. The quasi-reversible electron transfer process of cytochrome c oxidase with formal potential 385 mV vs. SHE in 5mM phosphate buffer solution (pH 6.4) corresponds to the redox reaction of cyt a(3) in cytochrome c oxidase, and the heterogeneous electron transfer rate constant obtained is 1.56 s(-1). By cyclic voltammetry measurements, it was observed that oxidation and reduction of cytochrome c in solution were catalyzed by the immobilized cytochrome c oxidase. This cytochrome c oxidase/MPA/Au system provides a good mimetic model to study the physiological functions of membrane-associated enzymes and hopefully to build a third-generation biosensor without using a mediator.
Resumo:
A palladium particle-modified carbon fiber microdisk array electrode was designed and employed in capillary electrophoresis for the simultaneous detection of hydrazine, methylhydrazine, and isoniazid. The Pd-modified microdisk electrode had high catalytic ability for hydrazines and exhibited good reproducibility and stability. The response for hydrazine was linear over 3 orders of magnitude with a correlation coefficient of 0.993. The detection limits far hydrazine, methylhydrazine, and isoniazid were 1.2, 2.1, and 6.2 pg, respectively.
Resumo:
The voltammetric behavior of cytochrome c entrapped in hydrogel membranes at paraffin wax-impregnated spectroscopic graphite electrodes (WISGE) was studied in this paper. A pair of well-defined peaks appeared at +70 mV (vs. Ag/AgCl). Beside these two peaks, another pair of peaks emerged at around +225 mV. Further investigations suggested that at least three states of cytochrome c existed in the membranes due to the special structure of the hydrogel. The native conformation of cytochrome c molecules was stabilized by the hydrophilic environment that was formed by the hydroxyl structure of the membranes and facilitated the cytochrome c electron transfer reaction at +70 mV. The molecules directly adsorbed on the surface of the graphite electrode were responsible for the redox peaks at around +225 mV. Whether the adsorption peaks were detectable or not was related to the thickness of membranes and the pre-retaining time before the formation of membranes.
Resumo:
The redox conversion of heme-containing protein horseradish peroxidase (HRP), which has a molar mass of 40,000, was studied. The conversion was obtained at an electrochemical polymerized o-phenylenediamine (PPD) film-modified platinum electrode. Optical c
Resumo:
Quasi-reversible and direct electron transfer was observed between an iodide-modified Au electrode and cytochrome c, as well as between cytochrome c in an iodide-containing solution and a bare Au electrode. The results suggest that an electrostatic intera
Resumo:
The current equation of the electrocatalytic reaction at a microdisk electrode modified with redox species has been described and verified experimentally. There exists a linear relationship between plateau limiting current and the radius of the microdisk electrode for a catalytic process. The influence of the dimensions of the microdisk electrode on catalytic efficiency is discussed. The polyvinylferrocene (PVFc)-modified microdisk electrode prepared by the coating method was taken as a typical example, on which the electrocatalytic oxidation of ascorbic acid could be studied. The catalytic reaction rate constants were determined as an average value of 1.5 X 10(-7) cm3/mol s by this method, and are consistent with those obtained at a conventional electrode.
Resumo:
An electrochemical sensor has been developed for the determination of the herbicide bentazone, based on a GC electrode modified by a combination of multiwalled carbon nanotubes (MWCNT) with b-cyclodextrin (b-CD) incorporated in a polyaniline film. The results indicate that the b-CD/MWCNT modified GC electrode exhibits efficient electrocatalytic oxidation of bentazone with high sensitivity and stability. A cyclic voltammetric method to determine bentazone in phosphate buffer solution at pH 6.0, was developed, without any previous extraction, clean-up, or derivatization steps, in the range of 10–80 mmolL 1, with a detection limit of 1.6 mmolL 1 in water. The results were compared with those obtained by an established HPLC technique. No statistically significant differences being found between both methods.
Resumo:
Quartz crystal microbalance (QCM) measurements of the formation of a 4-aminothiophenol (4-ATP)self-assembled monolayer (SAM) at a gold electrode showed that a surface coverage of 118 ng cm(-2) was obtained after a 3 h exposure period, indicating that good surface coverage was achieved. Cyclic voltammetry of the ferricyanide redox couple across this SAM modified surface produced similar results to those of a bare electrode; however, the electroreduction of oxygen was found to be impaired. The 4-ATP SAM layer was not stable to repeated electrochemical oxidation and reduction; it is believed that the 4-ATP SAM layer was first converted to a 4'-mercapto-N-phenylquinone diimine (NPQD) layer followed by subsequent formation of a 4'-mercapto-N-phenylquinone monoimine (NPQM) layer. We also report a quartz crystal microbalance study of the attachment of platinum nanoparticles to such SAM modified electrodes. We show that five times the amount of platinum nanoparticles can be attached to a 4-ATP modified electrode surface (observed frequency change - 187 Hz) compared with an NPQD modified electrode surface (observed frequency change -35 Hz). The presence of the platinum particles was confirmed electrochemically by their surface electrochemical properties, which were different from those of the underlying gold electrode. It is believed that this is the first time that such direct evidence of electrochemical communication between platinum nanoparticles and a SAM modified electrode surface has been obtained. It was also shown to be possible to build up multilayer SAM/nanoparticle modified surfaces while maintaining efficient electrochemical communication. Up to three SAM/nanoparticle sandwich layers were constructed.
Resumo:
A new approach to fabricate a disposable electronic tongue is reported. The fabrication of the disposable sensor aimed the integration of all electrodes necessary for measurement in the same device. The disposable device was constructed with gold CD-R and copper sheets substrates and the sensing elements were gold, copper and a gold surface modified with a layer of Prussian Blue. The relative standard deviation for signals obtained from 20 different disposable gold and 10 different disposable copper electrodes was below 3.5%. The performance, electrode materials and the capability of the device to differentiate samples were evaluated for taste substances model, milk with different pasteurization processes (homogenized/pasteurized, ultra high temperature (UHT) pasteurized and UHT pasteurized with low fat content) and adulterated with hydrogen peroxide. In all analysed cases, a good separation between different samples was noticed in the score plots obtained from the principal component analysis (PCA). Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Asystematic study on the surface-enhanced Raman scattering (SERS) for 3,6-bi-2-pyridyl-1,2,4,5-tetrazine (bptz) adsorbed onto citrate-modified gold nanoparticles (cit-AuNps) was carried out based on electronic and vibrational spectroscopy and density functional methods. The citrate/bptz exchange was carefully controlled by the stepwise addition of bptz to the cit-AuNps, inducing flocculation and leading to the rise of a characteristic plasmon coupling band in the visible region. Such stepwise procedure led to a uniform decrease of the citrate SERS signals and to the rise of characteristic peaks of bptz, consistent with surface binding via the N heterocyclic atoms. In contrast, single addition of a large amount of bptz promoted complete aggregation of the nanoparticles, leading to a strong enhancement of the SERS signals. In this case, from the distinct Raman profiles involved, the formation of a new SERS environment became apparent, conjugating the influence of the local hot spots and charge-transfer (CT) effects. The most strongly enhanced vibrations belong to a(1) and b(2) representations, and were interpreted in terms of the electromagnetic and the CT mechanisms: the latter involving significant contribution of vibronic coupling in the system. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
A systematic and comprehensive study of the interaction of citrate-stabilized gold nanoparticles with triruthenium cluster complexes of general formula [Ru(3)(CH(3)COO)(6)(L)](+) [L = 4-cyanopyridine (4-CNpy), 4,4`-bipyridine (4,4`-bpy) or 4,4`-bis(pyridyl)ethylene (bpe)] has been carried out. The cluster-nanoparticle interaction in solution and the construction of thin films of the hybrid materials were investigated in detail by electronic and surface plasmon resonance (SPR) spectroscopy, Raman scattering spectroscopy and scanning electron microscopy (SEM). Citrate-stabilized gold nanoparticles readily interacted with [Ru(3)O(CH(3)COO)(6)(L)(3)](+) complexes to generate functionalized nanoparticles that tend to aggregate according to rates and extents that depend on the bond strength defined by the characteristics of the cluster L ligands following the sequence bpe > 4,4`-bpy >> 4-CNpy. The formation of compact thin films of hybrid AuNP/[Ru(3)O(CH(3)COO)(6)(L)(3)](+) derivatives with L = bpe and 4,4`-bpy indicated that the stability/lability of AuNP-cluster bonds as well as their solubility are important parameters that influence the film contruction process. Fluorine-doped tin oxide electrodes modified with thin films of these nanomaterials exhibited similar electrocatalytic activity but much higher sensitivity than a conventional gold electrode in the oxidation of nitrite ion to nitrate depending on the bridging cluster complex, demonstrating the high potential for the development of amperometric sensors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of rotating ring–disk electrodes as generator-collector systems has so far been limited to the detection of Faradaic currents at the ring. As opposed to other generator-collector configurations, non-Faradaic detection has not yet been carried out with rotating ring–disk electrodes. In this study, a.c. perturbation based detection for measurement of the ring impedance is introduced. By using a conducting polymer-modified disk electrode in combination with a bare gold ring as a model, it is shown that the measured ring capacitance correlates with the polarization of the polymer film, most probably due to counter-ion exchange. A method of calculating the ring capacitance based on a small-signal sinusoid perturbation is described and the most important instrumental limitations are identified.